

17th
International Conference
on Environment
and Electrical Engineering

Demonstration of Friendly Interactive Grid Under the Background of Electricity Market Reform in China

Hongxun Hui, Xing Jiang, Yi Ding*, Yonghua Song
College of Electrical Engineering, Zhejiang University
Li Guo

State Grid Jiangsu Electric Power Company

June 2017

Zhejiang UniversityCollege of Electrical Engineering

1 Introduction

- **2** Pilot policies of demand response in China
- 3 Demonstration of friendly interactive grid
- 4 Conclusions and discussions

Background

ZJU

Two big challenges: Energy consumption, Environmental pollution

Billion toe

*Includes biofuels

Fig.1. Growing increase of Energy Consumption^[1]

Fig.2 Environmental Pollution

The increasing share of renewables in the power system

Fig.3 Renewable Energies (e.g. wind & photovoltaic)

Extra pressure of power system secure operation:

Less predictable and controllable;

High fluctuations and intermittence.

Demand Response

Fig.4 EcoGrid EU-assumed wind power capacity in 2025^[2]

[2] Ding Y, Nyeng P, Ostergaard J, et al. Ecogrid EU-a large scale smart grids demonstration of real time market-based integration of numerous small DER and DR

Fig.5 Smart house

Fig.6 Conventional generating units

- 1 Introduction
- **2** Pilot policies of demand response in China
- 3 Demonstration of friendly interactive grid
- 4 Conclusions and discussions

The business model of demand response in Jiangsu Province

Fig.7 Business model of demand response in Jiangsu Province

• The business model includes three entities: Government, Electricity Company and Demand Response Providers (DRP).

The spike pricing policy

(1) Original peak-valley price policy

Fig.8 Electricity price policy in Jiangsu Province

- The spike price is based on the original peak valley price. It increases 0.1 Yuan/kWh for the large industrial customers.
- The spike price policy will be carried out when the outside temperature is over 35 degrees Celsius in summer (July and August).

ZJU

The Effect of Demand Response

- Around 56,000 large industrial customers were implemented the spike price policy.
- Compared with the original peak-valley price policy, the income of electricity increase 32 million Yuan and 45.51 million Yuan in 2015 and 2016, respectively.
- All the increased income were used to subsidize the customers or aggregators who successfully implemented DR.

TABLE I. THE EFFECT OF DEMAND RESPONSE

Typical days	Number of industrial customers	Number of commercial customers	Number of residential customers	Number of aggregators	Reduction of Loads (MW)	Reduction of Peak- valley difference
August 4, 2015	513	0	0	8	1,887	10.59%
July 26, 2016	1283	1526	321	24	3,520	18.47%

1 Introduction

- **2** Pilot policies of demand response
- **3** Demonstration of friendly interactive grid
- 4 Conclusions and discussions

It is approved and supported by *Ministry of Science and Technology of the People's Republic of China*.(2016-2020)

Demonstration area in **Suzhou**

- Administrative region: 78 km²
- Resident population: 780,000
- ✓ Large industry customers: 1420
- ✓ Commercial customers: 32437
- ✓ Residential customers: 352,600
- Load aggregators: 5

Demonstration area in Changzhou

- Administrative region: 182 km²
- Resident population: 1,600,000
- ✓ Large industry customers: 590
- ✓ Commercial customers: 21755
- ✓ Residential customers: 530,000
- Load aggregators: 3

It is approved and supported by Ministry of Science and Technology of the People's Republic of China. (2016-2020)

Residential customers: 110,000 houses and 22 aggregators

Distributed generations: wind power and photovoltaic power

Charging stations: covering 30,000 houses

Two main objectives:

- (1) Peak-valley difference of loads decrease by 5.8%.
- (2) Comprehensive energy consumption of residential customers decrease by 5.5%.

It is approved and supported by *Ministry of Science and Technology of the People's Republic of China*.(2016-2020)

Large industrial customers: more than 1,000 enterprises.

Commercial customers: 250 malls, 300 hotels, 150 office buildings and so on.

Residential customers: 110,000 houses and 22 aggregators

Distributed generations: wind power and photovoltaic power

Charging stations: covering 30,000 houses

Interaction platform

Energy management system

Business model

Two main objectives:

- (1) Peak-valley difference of loads decrease by 5.8%.
- (2) Comprehensive energy consumption of residential customers decrease by 5.5%.

It is approved and supported by Ministry of Science and Technology of the People's Republic of China. (2016-2020)

Distributed generations: wind power and photovoltaic power

Business model

Two main objectives:

- (1) Peak-valley difference of loads decrease by 5.8%.
- (2) Comprehensive energy consumption of residential customers decrease by 5.5%.

1 Introduction

2 Pilot policies of demand response

- 3 Demonstration of friendly interactive grid
- 4 Conclusions and discussions

Conclusions and discussions

Challenges:

- The future power system will be more fluctuating due to the high penetration of RES.

The pilot policy of demand response:

- The reduction of peak-valley difference can reach 18.47% and the average response capacity of residential customers can reach 590W.
- Demonstration—Friendly Interactive System of Supply and Demand (FISSD):
 - In order to do further study on DR, a demonstration project was implemented in Suzhou and Changzhou.
 - The FISSD will be one of the largest DR project in the world and make significant progress toward DR's study.
 - The demand response will make greater contributions to the future power system.

Thank you for your attention!

MILAN | ITALY | 6th - 9th June 2017

17th
International Conference
on Environment
and Electrical Engineering

Zhejiang UniversityCollege of Electrical Engineering