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H I G H L I G H T S

• A thermostatically controlled load (TCL) model considering consumer behaviors is developed.

• Consumer satisfaction is considered in the decision making process by fuzzy set method.

• Operating reserve capacity (ORC) of TCLs is evaluated based on price signals.

• A kernel density estimation method is proposed to evaluate ORC with insufficient data.
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A B S T R A C T

Thermostatically controlled loads (TCLs) have been studied to provide operating reserve for maintaining power
balance between supply and demand. However, operating reserve capacity (ORC) supplied by aggregated TCLs is
difficult to evaluate, due to the insufficient information of heterogeneous TCLs and consumer behaviors. This
paper proposes a quantitative ORC evaluation method for large-scale aggregated heterogeneous TCLs without
sufficient measurement data. Firstly, an individual TCL model on account of consumer behaviors is developed to
characterize the impact of fluctuated electricity prices and different thermal comfort requirements. Secondly, a
novel optimization model of heterogeneous TCLs, which can guarantee consumer satisfaction, is proposed to
provide operating reserve for power systems. Thirdly, the probability density estimation (PDE) method is de-
veloped to evaluate the ORC provided by large-scale heterogeneous TCLs with insufficient data. Numerical
studies illustrate the effectiveness of the proposed models and methods.

1. Introduction

The increasing penetration of renewables brings more fluctuations
to electric power systems [1]. Therefore, the requirement of operating
reserve capacity (ORC) for maintaining power balance between supply
and demand is larger [2]. Conventionally, operating reserve is provided
by generating units, such as thermal power units [3]. However, the
share of traditional generators in power generation is decreasing and
may not be able to satisfy the requirement of ORC [4]. Moreover, in-
formation and communication technology have developed, which
makes it possible for demand side resources (DSRs) to provide oper-
ating reserve by reducing or shifting loads [5,6].

Thermostatically controlled loads (TCLs), such as heating, ventila-
tion and air conditioning, account for a large share of power con-
sumptions. For example, the power proportion of residential air con-
ditionings reaches up to 40% during summer peak load periods in China
[7,8]. Moreover, consumer’s comfort will not be affected when the

operating states of TCLs are adjusted temporarily [9,10]. Therefore,
TCLs have a great potential to be controlled and provide ORC [11]. A
TCL model is developed in [12] to participate in operating reserve
services. Ref. [13] proposes centralized control methods on TCLs to
provide operating reserve. The comparison of distributed system and
centralized system is studies in [14]. Besides, a load following method
is developed in [6] to enhance the safety and stability of the power
system. An operational planning framework for aggregated TCLs is
developed to improve the efficiency in day-ahead scheduling and real-
time operation [15,16].

Price-based demand response (DR) is one of the main approaches
for DSRs providing operating reserve services [10,17]. Consumers can
adjust the power consumption to respond the variable electricity prices
[18] and reduce their electricity expenditure [19,20]. Moreover, the
social welfare is improved based on the price-based DR [21] and the
optimization mechanism [22,23]. However, two practical problems of
ORC evaluation are relatively less studied: On the one hand, the lack of
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consumer behavior model makes it difficult to evaluate the ORC pro-
vided by aggregated TCLs. Consumers have diverse preferences on
power consumption when the electricity prices are fluctuated [24–26].
Therefore, the consumer decision making process is relatively vague.
On the other hand, it is impractical to obtain all the heterogeneous
parameters, especially for large-scale TCL aggregations. Therefore, ORC
has to be evaluated based on insufficient data of aggregated hetero-
geneous TCLs.

In this paper, an ORC evaluation method for large-scale aggregated
heterogeneous TCLs is proposed based on insufficient measurement
data. Firstly, an individual TCL model is developed to evaluate ORC
provided by a consumer. Then, satisfaction index is quantified by the
fuzzy set method. Consumer’s decision-making process and behaviors
are simulated with the aim of maximizing satisfactions. Finally, the
probability density estimation (PDE) method is proposed to evaluate
ORC with insufficient data. The main contributions of this paper can be
summarized as follows:

(1) The individual TCL model integrating electric-thermal character-
istics and consumer behaviors, is developed for providing ORC

considering consumer satisfaction with price signals, which has
been rarely studied in the existing literatures.

(2) Consumer preferences on the electricity price and the room tem-
perature are modeled with the fuzzy set method. In this manner,
consumer’s cognition and trade-off in decision making process can
be quantified for consumer behavior simulation.

(3) The PDE method is proposed to evaluate the ORC of large-scale
heterogeneous TCLs without sufficient measurement data.
Compared with the traditional moment estimation method, the
evaluation precision of ORC is improved significantly.

This paper is organized as follows. Section 2 develops an individual
TCL model on account of consumer behaviors. Section 3 introduces the
ME and the PDE method for estimation with insufficient data, respec-
tively. The effectiveness of the proposed model and methods are illu-
strated by numerical studies in Section 4. Finally, Section 5 concludes
this paper.

Nomenclature

Acronyms

ORC operating reserve capacity
TCL thermostatically controlled load
PDE probability density estimation
ME moment estimation
EER energy efficiency ratio
DR demand response
DSR demand side resource
TSK Takagi-Sugeno-Kang
CM comfortable temperature
CL cool temperature
HT hot temperature
LW low electricity cost
AP acceptable electricity cost
HG high electricity cost

Variables and parameters

Tset set temperature of a TCL
Troom room temperature
S operation state of a TCL

TΔ hysteresis band of room temperature

P power consumption of a TCL
Pr rated power of a TCL
p electricity price
C electricity cost
Q refrigerating capacity of a TCL
Hr equivalent thermal conductance of a room
Text ambient temperature
Croom thermal mass of a room
ys consumer satisfaction value
μ membership values
Pk average power of the −k th TCL

PΔ k power deviation of the −k th TCL
PORC ORC provided by aggregated heterogeneous TCLs

̂fh joint probability density function
Ns number of TCLs with known parameter
N total number of TCLs
⌢Pavg evaluation value of the average power Pavg
⌢PORC evaluation value of the total ORC PPRC
K kernel function
h bandwidth of the K
α satisfaction weight between the electricity cost and the

room temperature
em error of the estimated ORC

Decision making 

Electric model of the TCL

Set temperature

Thermal model

Objective

Preferences

Thermal parameters

Room temperature

Room temperature

Electricity cost
Refrigeration mode

Standby mode

Keep current state

thermal conductance

thermal mass…

Satisfaction Optimization 

with constrains

Price signals

Operating Reserve 
Capacity (ORC)

Input Consumer model Electric-thermal model Output

Refrigerating capacity

Differential 
equation 

TCL Controller

Heat 
exchange

Maximum satisfaction control

Load adjustment

Power consumption

Individual TCL Model
rH

roomC

Fig. 1. The framework of the individual TCL model.
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2. Individual TCL model

2.1. Framework and electric-thermal model

To evaluate ORC provided by aggregated TCLs, the framework of an
individual TCL model is proposed, as shown in Fig. 1. The individual
TCL model comprises the consumer model and the electric-thermal
model, the latter of which is divided into electric model of the TCL and
the thermal model of a room. Moreover, the input and output of the
individual TCL model are price signals and ORC, respectively [3,28].

The consumer model is developed to simulate the consumer beha-
viors, which considers the electricity cost and room temperature. Based
on the preference of the two factors, index of consumer’s satisfaction is
defined. Then, optimal control strategy is designed to maximize con-
sumers’ satisfaction level. The modeling details will be discussed in the
next two subsections.

It is assumed that TCLs work in refrigeration mode during summer
period. The operating state of the TCL is decided by the set temperature
T t( )set and the current room temperature T t( )room , which can be ex-
pressed as

=
⎧

⎨
⎩

⩾ +
⩽ −

−
S t

T t T t T
T t T t T

S t τ else
( )

1, ( ) ( ) Δ
0, ( ) ( ) Δ

( ),

room set

room set

(1)

where S t( ) is the operating state of the TCL; TΔ represents the hys-
teresis band for room temperature control; τ is the time interval of each
control. The TCL will turn to refrigeration mode ( =S t( ) 1) if the room
temperature is higher than the set temperature, while the TCL will turn
to standby mode ( =S t( ) 0) if the room temperature is lower than the
set temperature.

The power consumption and the electricity cost of the TCL can be
expressed as

=P t P S t( ) · ( )r (2)

=C t P t p t( ) ( )· ( ) (3)

where P t( ) and Pr is the power consumption and the rated power of the
TCL, respectively; C t( ) is the electricity cost; p t( ) is the electricity price.

Moreover, the refrigerating capacity provided by the TCL can be
expressed as

=Q t EER P t τ( ) · ( )· (4)

where EER is the energy efficiency ratio between the power consump-
tion and the refrigerating capacity.

The thermal model of the room can be described as [29]

= − + − − −T t T t τ Q H T t τ T
C

( ) ( ) ( ( ) )
room room

r room ext

room (5)

where Hr is the equivalent thermal conductance between the indoor air
and the ambient air; Text and Croom are the ambient temperature and
thermal mass of the room, respectively.

2.2. Consumer satisfaction quantization

It is crucial to ensure consumer satisfaction when controlling elec-
tricity consumption of TCLs so that consumers are willing to participant
in DR programs. TCL consumer satisfaction is mainly affected by their
preferences for the room temperature and the electricity cost, which
tend to be unspecific and may change over time with high uncertainty.
The fuzzy set method is able to model the qualitative aspects of human
knowledge without precise quantitative analysis [30,31]. Therefore, a
typical fuzzy model (i.e., TSK (Takagi-Sugeno-Kang) fuzzy model [32]),
which is adapted at processing intermediate values just like human
cognition, is proposed to quantify consumer satisfaction, as shown in
Fig. 2.

Consumer’s cognitions can be modeled by the approach of fuzzy set
method. Three fuzzy subsets of room temperatures Troom are defined to
represent different feelings, including cool (CL), comfortable (CM) and
hot (HT). Similarly, three fuzzy subsets of electricity costs C including
low (LW), acceptable (AP) and high (HG) are defined to express the
consumer sensitivity. The membership values of each fuzzy subset
could be derived from adopted membership functions.

Each combination of the above subsets will have corresponding
consumer satisfaction values. Consumer satisfaction value depends on
the transition from the temperature and cost subsets. In TSK fuzzy
model, the transition is defined as a form of IF-THEN rules with a linear
function integrating the room temperature and the electricity cost. A
typical fuzzy rule to calculate satisfaction can be expressed as

=C T y f C TIf( is LW) and ( is CM) Then ( ( , ))room s
i i

room (6)

where ys
i is the consumer satisfaction value of the ith fuzzy rule. f (·)i is

the linear function of the ith fuzzy rule, which can be expressed as

= + +f C T a a C a T( , ) · ·i
room

i i i
room0 1 2 (7)

where a a a, ,i i i
0 1 2 are parameters for the ith consumer. Consumers’ trade-off

between room temperature Troom and electricity cost C can be simulated
based on reasonable choices of these parameters, whose example is
shown in Section 4.1.

From Eqs. (6) and (7), the satisfaction index can be calculated by the
function f (·)i , if the electricity cost C is LW and the room temperature
Troom is CM, respectively. Similarly, all combinations of the subsets can
be calculated according to different parameters of heterogeneous cus-
tomers. In this manner, consumer satisfaction ys can be expressed as the
output of TSK fuzzy model [32]

Room temperature

Electricity cost 

CL CM HT

LW AP HG

Cool (CL)

Comfortable (CM)

Hot (HT)

Low (LW)

Acceptable (AP)

High (HG)

Consumer 
satisfaction

Input Input fuzzy subsets Input membership functions Fuzzy rules Output

IF-THEN

…

Fig. 2. The framework of fuzzy set method.
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∑ ∑=
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where μ μ,C
i

T
i are the membership functions of the different fuzzy subsets

corresponding to the ith fuzzy rule, whose subscript ‘C’ and ‘T’ indicate
the fuzzy subsets of the electricity cost C and the room temperature
Troom, respectively. R is the number of the fuzzy rules. From Eqs. (6)–(8),
the TSK fuzzy model is able to output the quantified consumer sa-
tisfaction based on the inputs of the room temperature and the elec-
tricity cost.

2.3. Maximum satisfaction control strategies

According to the economic man hypothesis [33], it is assumed that
each individual is rational with complete knowledge and aims to
maximize personal utility. Therefore, the decision making process of
TCL consumer is to maximize the satisfaction, which is determined by
the electricity cost and the room temperature. In this way, the control
strategy of the set temperature is to maximize satisfaction ys and is
expressed by

∑ ∑
= =

Max μ C μ T y μ C μ T( ( )· ( )· ) ( ( )· ( ))
i

R

C
i

T
i

room s
i

i

R

C
i

T
i

room
1 1 (9)

where ys is the consumer satisfaction expression shown in Eq. (8).
The constraints are as following:

(1) TCL model in Eqs. (1) and (2).
(2) Cost function in Eq. (3).
(3) Thermal model in Eqs. (4) and (5).
(4) Inequality constraint:

⩽ ⩽T T t T( )setmin max (10)

The objective function of the Eq. (10) is complex and nonlinear,
which lead to a nonlinear mixed-integer programming. In practice, the
set temperature of a TCL is an integer and limited in a certain range. For
example, the set temperature range of TCL is between 18 °C and 30 °C in
general, where only the integer temperatures could be set. There are
few temperature alternatives for consumer decisions. Therefore, tra-
versal method is applied to solve this optimization. The calculation
steps are as following:

Step 1. List alternative set temperatures of the TCL.
Step 2. Calculate the average power and electricity cost in different
set temperatures.
Step 3. Calculate the consumer satisfaction values by the fuzzy
model.
Step 4. Compare each satisfaction values and choose the set tem-
perature Tset corresponding to maximum satisfaction as the optimal
decision.

As shown in Fig. 1, the set temperatureTset serves as an intermediate
variable in the process from input (price signals) to output (power
consumption). After obtaining optimal Tset, power consumption P can
be calculated based on the electric-thermal model and then, ORC can be
evaluated.

3. ORC evaluation of aggregated heterogeneous TCLs

The individual TCL model involves many parameters and variables,
which could influence the output more or less. Aggregators or operators
of power systems are required to obtain all the values to evaluate the
total ORC. In general, ORC evaluation can be calculated in

∑=
=

P p p P p p( , ) Δ ( , )ORC
k

N
k

0 1
1

0 1
(11)

where N is the total number of TCLs, and P p pΔ ( , )k
0 1 is a function of the

current price p0 and target price p1, which can be expressed as

= −P p p P p P pΔ ( , ) ( ) ( )k k k
0 1 0 1 (12)

where P p( )k is the average power of the k-th TCL.
In practice, estimation sometimes has to be made without sufficient

information due to limited measurements or equipment failures. For
example, the thermal parameters (e.g. equivalent thermal conductance
and thermal mass) cannot be collected easily because the values vary
with time, locations and buildings. These parameters or variables may
be obtained via survey by field works, or by parameter fitting from
actual monitoring data. But it costs too much to obtain these para-
meters of every individual, especially for a large-scale heterogeneous
aggregation. Thus, ORC provided by TCLs has to be evaluated based on
insufficient data. In this section, two feasible estimation methods are
given: moment estimation (ME) method and probability density esti-
mation (PDE) method.

3.1. Moment estimation method

Moment estimation (ME) method, as one of the point estimation
methods [27], is applied in ORC evaluation. The evaluation steps are
shown in Fig. 3.

It is assumed that the number of known TCLs is Ns of the whole
number N . The mean value of ORC based on Ns TCL data is calculated.
Then, the total ORC of all the N TCLs is estimated, which can be ex-
pressed as

∑⌢ =
=

P p p N
N

P p p( , ) Δ ( , )ORC
s k

N
k

0 1
1

0 1
s

s

(13)

3.2. Probability density estimation method

The probability density estimation (PDE) method is divided into two
stages. Kernel density estimation is used in the first stage to estimate
probability density function based on the limited measurement data. In
the second stage, the ORC of aggregated TCLs is evaluated by calcu-
lating the expectation of power consumption.

3.2.1. The first stage
Kernel density estimation is one of non-parametric PDE methods to

estimate the probability density distribution. Compared with para-
metric methods, the main advantage is the extensive applicability in
unknown densities, especially for irregular shapes [34]. Moreover, the
smoothness of kernel density results helps to avoid statistical errors
compared with other non-parametric density estimation methods, such
as frequency histogram. In Fig. 4, a multi-peak density function is taken
as an example to illustrate the principle of kernel density estimation.

There are 6 known data points marked in black solid lines. Every
known data point corresponds to a kernel function, which is normal
distribution indicated by red1 dashed curves. These kernel functions are
summed for the kernel density estimation, which is shown as the blue
solid line.

In this way, the density of a parameter could be estimated based on
the data with the least prior knowledge. To address this process, let

…( )H H H, , ,r r r
N1 2 s be independent and identically distributed variables of

equivalent thermal conductance Hr , where Ns is the known data number
in the whole number N . The estimated probability density ̂fhHr

can be
expressed as

̂ ∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠=

f H
N h

K
H H

h
( ) 1

h r
s Hr i

N
r r

i

Hr1
Hr

s

(14)

1 For interpretation of color in Figs. 4, 7, 8 and 10, the reader is referred to the web
version of this article.
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where K (·) is the kernel function, which is nonnegative and integral
value is 1. There are several kernel functions can be used, such as
uniform, normal (Gaussian), Epanechnikov and others [34]. Con-
sidering the convenient mathematical properties, normal kernel func-
tion is applied:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

K x
π

x( ) 1
(2 )

exp
2n/2

2

(15)

The hHr is the bandwidth of the kernel K (·), which is required to be
chosen strictly for the trade-off between the deviation of the estimator
and its variance. If the bandwidth is large, the results will be too smooth
and omit some important information. On the contrary, the results will
contain lots of noises if the bandwidth is small. Different bandwidth
choices will lead to completely different estimation results. To mini-
mize the mean integrated squared error [35], the rule-of-thumb band-
width estimator method is adopted for normal kernel [36]

̂=h N σ(4/3 )Hr s Hr
1/5 (16)

where ̂σHr is the standard deviation of Hr .
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Fig. 3. The flow chart of ME method.
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Similarly, the probability density function ̂fhCroom
of the thermal

mass of the room Croom can be obtained based on the kernel density
estimation.

In order to evaluate the mean thermal potential, the joint density
function of Hr and Croom should be derived from the marginal density
functions of ̂fhCroom

and ̂fhHr
. Hr is mainly influenced by the room area

and materials of walls, whereas Croom primarily depends on the room
space and the air heat capacity. Hence, there is no direct relationship
between Hr and Croom, which indicates the independence of the two
parameters. The joint density function ̂fh can be expressed as

̂ ̂ ̂=f C H f C f H( , ) ( )· ( )h room r h room h rCroom Hr (17)

From Eqs. (14)–(17), the joint density function can also be extended to
multi-dimension if the parameters are independent with each other.

3.2.2. The second stage
Mean value of individual power consumption can be obtained by

calculating the probability expectation, which is described as

̂∫ ∫⌢ =P p f C H P p C H( ) ( , )· ( , , )avg C H h room r avg room r0 0
room r (18)

where Pavg is the expectation of TCL power at the price p0; x y, represent
estimated parameters.

The ORC of the TCL can be evaluated as

⌢ = ⌢ −⌢P p p N P p P p( , ) ·( ( ) ( ))ORC avg avg0 1 0 1 (19)

The total ORC provided by the aggregated heterogeneous TCLs can
be calculated as the flow chart in Fig. 5.

4. Case studies

This section proves the efficiency of the proposed model and

All possible parameters are 
considered 

Estimate joint probability density of the parameters

Receive price signals

Calculate the maximum satisfaction control strategies of TCLs

Reset temperatures

Calculate the power consumptions of TCLs

All prices signal are 
considered

Estimate the total power expectations

Sample TCLs randomly 

Parameter initialization of N TCLs

Start

Calculate the difference between the power 
load before and after price variation

Output ORC values

Yes

Yes

No

No

Fig. 5. The flow chart of PDE method.

Table 1
Fuzzy subsets of the room temperature Troom.

Fuzzy subsets Min Up-Min Up-Max Max

CL – – 21.0 24.0
CM 21.0 24.0 26.0 29.0
HT 26.0 29.0 – –

Table 2
Fuzzy subsets of the electricity cost C .

Fuzzy subsets Min Up-Min Up-Max Max

LW – – 1.0 2.0
AP 1.0 2.0 4.0 5.0
HG 4.0 5.0 – –
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methods by case studies. Section 4.1 introduces the test system. Section
4.2 analyzes the accuracy of the ME method and the PDE method.
Section 4.3 represents a real application of ORC evaluation in an actual
case study.

4.1. The test system

In the test system, the ambient temperature is 30 °C. The total
number of TCLs N is 20,000, where only 100 TCLs can be randomly
measured. The rated power Pr of TCL is assumed to be 2 kW. The energy
efficiency radio (EER) is 3.0. TΔ is set to be 1 °C. It is assumed that the
thermal mass of the room Croom (kJ/°C) obeys normal distribution,
which is ∼C N (12,3.6 )room

2 . In order to generalize the distribution of
equivalent thermal conductance Hr (kW/°C), half of Hr follows
N (1.5,0.4 )2 and the other half follows N (0.8,0.2 )2 [3].

The initialized fuzzy subsets of the room temperature and the
electricity cost are shown in Table 1 and Table 2, respectively [32].
Fig. 6 shows the example of fuzzy subset.

In addition, the fuzzy rules are shown in Table 3. The parameter α is
the weight of satisfaction to the different factors, indicating the con-
sumer’s trade-off between room temperature and electricity cost. The
weight of room temperature is heavier with a larger α. All the α are
assumed to follow uniform distribution ∼α U (0,1).

Three cases are considered to illustrate the efficiency of proposed
methods:

Case 1: Direct summation based on sufficient parameters of 20, 000
TCLs. This case can be regard as actual value.
Case 2: Moment estimation (ME) method based on insufficient
parameters of 100 TCLs.
Case 3: Probability density estimation (PDE) method based on in-
sufficient parameters of 100 TCLs.

To compare this the estimation performance of the two method, the
error of the estimated ORC is defined as

= ⌢ −⌢ ⌢ =e P P P m| |/ ( 2,3)m ORC
m

ORC ORC
1 1

(20)

Fig. 6. Fuzzy subset example of CM (the comfortable feeling of the room temperature).

Table 3
Fuzzy rules of individual TCL model.

f (·)i CL CM HT

LW −α1 1 −α1
AP −α α·(1 ) α −α α·(1 )
HG −α α·(1 )2 α2 −α α·(1 )2
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where ⌢P ORC
m

is the evaluated ORC of the aggregated TCLs in Case m.

4.2. ORC evaluation with insufficient data

The first stage of the PDE method is to estimate the distribution of
heterogeneous insufficient parameters by kernel density estimation.
The accuracy of the proposed method is analyzed as shown in Fig. 7.

Fig. 7(a) and (b) show the probability density distributions of the
thermal mass Croom and the thermal conductance Hr , respectively. Both
known data points are marked with a number of tiny black bars scat-
tered on the axis of the abscissa. Frequency histograms and kernel
density are marked with the gray histograms and the red curves, re-
spectively. As shown in the figures, frequency histograms of 100 TCLs
can reflect the general trend of the actual density (the blue curve). But
there are obvious deviations due to abnormal data, such as the third
histogram in Fig. 7(a). By contrast, probability density of 100 TCLs
estimated by PDE method is almost overlapped with the actual density
distributions, which is able to reduce the impact of the abnormal data
and smooth the curve. The joint density distribution is obtained from
the probability densities of Hr and Croom, shown in Fig. 7(c).

Fig. 8 shows the ORC evaluation performances of different methods
in different number size Ns of known data. When =N 100s , compared
with the curve of ME method (the red dotted curves), the curve of PDE
method (the orange dotted curves) is much closer to the actual curve
(the blue solid curves). The error comparison is shown in Fig. 8(d),
where the errors reach over 9.0% in ME method, whereas the errors in
PDE method are within 4.0%. Similar conclusions can be made in other
values of Ns. Therefore, the proposed PDE method is more accurate than
ME method, and is able to improve the ORC evaluation accuracy based
on the same insufficient data.

Fig. 8(d)–(f) show the trend of evaluation errors of ME method and
PDE method in different Ns, respectively. In comparison of the three
figures, both errors of ME method and PDE method experience a sig-
nificant decrease with the increase of Ns. More details of evaluation
errors are explained in Fig. 9.

In Fig. 9, average errors corresponding to different number size Ns

are calculated to highlight the PDE method applicability in different
data distributions. With the increase of Ns, the average errors of both
methods decline and converge to zero gradually. In comparison, the
average error of PDE method is significantly less than that of ME
method. The error differences of the two methods are shown in Fig. 8
(the black solid curve), where the maximum difference reaches 7.8% at
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the number size 50. The trend of curve shows that there are less error
differences in larger number sizes, which highlights the estimation ac-
curacy of PDE method especially in small number size of known data.

4.3. ORC evaluation in actual case studies

In this subsection, the practicality of the proposed PDE method is
verified in the case studies based on actual DR data. Firstly, one of the
pilot projects in a province of China is introduced with actual data.
Then it is illustrated that the proposed PDE method can be applied in
possible events of the pilot project. Finally, case study and analysis of
PDE method applications are discussed.

4.3.1. Introduction of the pilot project
One of the pilot projects selects 522 residential consumers in

Jiangsu province of China, where the power consumption of TCLs ac-
counts for more than 30% during summer peak load. Smart meters and
terminal controllers are installed in order to enable consumers to make
demand response strategies with their personal needs.

The aggregated power consumption of selected consumers is col-
lected in every 15min for two weeks under similar weather conditions.
The first week data without demand response (DR) program is regarded
as baseline load. During the second week, the peak price signals were
sent to consumers between 14:00 and 15:00 every day and thereby, the
power consumption decreased to provide ORC for power system. The
power consumptions are averaged based on the obtained data of the
two week.

Results of actual DR program are shown in Fig. 10(a), where the
blue solid curve is the sum of power in non-DR case, while the black
solid curve is the sum of power in DR case. These two curves are
overlapped at most of the time except for the period between 14:00 and
16:00, where the DR case experienced a significant load curtailment
and the power consumption decreased to the minimum at 14:56. The
operating reserve capacity (ORC) is 1.22MW, calculated by the max-
imum load curtailment. It proves the feasibility of demand response
providing operating reserve for power systems.

4.3.2. Case studies of proposed method applications
The proposed PDE method, which provides a more accurate esti-

mation with less measured data, can be widely applied in demand re-
sponse programs. For example, in the case of data loss due to com-
munication or measurement failure, complete data of every individual

cannot be obtained to calculate aggregated power consumption, which
may serve as an important index for further actions. In the circum-
stances, the proposed PDE method provides an approach to improve the
accuracy of estimation with limited available data, which could help to
make the right decisions.

The following case study shows the application of PDE method in
the above pilot project when there exists data loss. The total number of
residential consumers is N in the pilot project. It is assumed that only
the data of Ns consumers can be obtained while other data is lost due to
equipment failures. The ME method and PDE method are applied to
estimate the power consumption with Ns known consumers, respec-
tively. N and Ns are set to be 522 and 50, respectively. The flow chart of
this case studies is shown in Fig. 11.

Fig. 10(a) shows the estimation of power consumption with ME
method and PDE method, which is illustrated by the red dotted curve
and the orange dotted curve, respectively. The estimation of power
consumption obtained by PDE method is much more consistent with
that of ME method. The error between estimation data and actual data
in DR program (the black solid curve) is shown in Fig. 10(b), where PDE
method is more accurate and appropriate than ME method. The average
error of ME method reaches 5.90%, which is relatively high value.
Compared to that, the average error of PDE method is 2.52%, which is
much less than that of ME method and thereby, proves the practicality
of PDE method to estimate aggregated power with insufficient data.

5. Conclusions

The progress of information and communication technology has
made it easier for demand side resources to provide operating reserve.
This paper proposes a quantitative evaluation method of operating re-
serve capacity (ORC) provided by aggregated heterogeneous TCLs with
insufficient measurement data. The individual TCL model considering
consumer’s behaviors is developed to characterize the impact of fluc-
tuated electricity prices and different temperature requirements.
Consumer’s perspective on electricity prices and feeling of the room
temperature are modeled by the fuzzy set method. In this manner, the
consumer’s satisfaction is defined and then optimized in the maximum
satisfaction control strategies. Moreover, the probability density esti-
mation (PDE) method is proposed to evaluate the ORC provided by
large-scale heterogeneous TCLs without sufficient measurement data.
The numerical studies shows that, compared with the traditional esti-
mation method, the PDE method can improve the accuracy of the ORC
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Fig. 11. The flow chart of estimation of power consumption.
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evaluation with insufficient data.

Acknowledgements

The research is supported by the National Natural Science
Foundation of China (NSFC) under Grant 51577167 and the State Grid
Corporation of China (521104170007).

References

[1] Ma O, Alkadi N, Cappers P, Denholm P, Dudley J, Goli S, et al. Demand response for
ancillary services. IEEE Trans Smart Grid 2013;4(4):1988–95.

[2] Wang J, Wang X, Wu Y. Operating reserve model in the power market. IEEE Trans
Power System 2005;20(1):223–9.

[3] Hui H, Ding Y, Liu D, Lin Y, Song Y. Operating reserve evaluation of aggregated air
conditioners. Appl Energy 2017;196:218–28.

[4] Bricman Rejc Z, Cepin M. Estimating the additional operating reserve in power
systems with installed renewable energy sources. Int J Elect Power Energy Syst
2014;62:654–64.

[5] Siano P, Sarno D. Assessing the benefits of residential demand response in a real
time distribution energy market. Appl Energy 2016;161:533–51.

[6] Hu J, Cao J, Chen ZM, Yu J, Yao J, Yang S, et al. Load following of multiple het-
erogeneous TCL aggregators by centralized control. IEEE Trans Power System
2017;32(4):3157–67.

[7] Zhang W, Lian J, Chang CY, Kalsi K. Aggregated modeling and control of air con-
ditioning loads for demand response. IEEE Trans Power System
2013;28(4):4655–64.

[8] Hwang JC. Assessment of air condition load management by load survey in
Taipower. IEEE Trans Power Syst 2001;16(4):910–5.

[9] Wang K, Yao J, Yao L, Yang S, Yong T. Survey of research on flexible loads sche-
duling technologies. Autom Elect Power Syst 2014;38(20):127–36.

[10] Callaway DS. Tapping the energy storage potential in electric loads to deliver load
following and regulation with application to wind energy. Energy Convers Manage
2009;50(5):1389–400.

[11] Papadaskalopoulos D, Strbac G, Mancarella P, Aunedi M, Stanojevic V.
Decentralized participation of flexible demand in electricity markets—Part II: ap-
plication with electric vehicles and heat pump systems. IEEE Trans Power Syst
2013;28(4):3667–74.

[12] Dehghanpour K, Afsharnia S. Electrical demand side contribution to frequency
control in power systems: a review on technical aspects. Renew Sustain Energy Rev
2015;41:1267–76.

[13] Lu N, Zhang Y. Design considerations of a centralized load controller using ther-
mostatically controlled appliances for continuous regulation reserves. IEEE Trans
Smart Grid 2013;4(2):914–21.

[14] Zheng ML, Fang RY, Yu ZT. Life cycle assessment of residential heating systems: a
comparison of distributed and centralized systems. In: Applied Energy symposium
and forum 2016: low carbon cities & urban energy systems. 2016.

[15] Luo F, Dong ZY, Meng K, Wen J, Wang H, Zhao J. An operational planning fra-
mework for large-scale thermostatically controlled load dispatch. IEEE Trans Indust
Informatics 2017;13(1):217–27.

[16] Lu N. An evaluation of the HVAC load potential for providing load balacing service.
IEEE Trans Smart Grid 2012;3(3):1263–70.

[17] Bianchini G, Casini M, Vicino A, Zarrilli D. Demand-response in building heating
systems: a model predictive control approach. Appl Energy 2016;168:159–70.

[18] Liu M, Shi Y. Model predictive control of aggregated heterogeneous second-order
thermostatically controlled loads for ancillary services. IEEE Trans Power Syst
2016;31(3):1963–71.

[19] He X, Keyaerts N, Azevedo I, Meeus L, Hancher L, Glachant JM. How to engage
consumers in demand response: a contract perspective. Utilities Policy
2013;27:108–22.

[20] Qv D, Dong BB, Cao L, Ni L, Wang JJ, Shang RX, et al. An experimental and the-
oretical study on an injection-assisted air-conditioner using R32 in the refrigeration
cycle. Appl Energy 2017;185:791–804.

[21] Yu R, Yang W, Rahardja S. A statistical demand-price model with its application in
optimal real-time price. IEEE Trans Smart Grid 2012;3(4):1734–42.

[22] Chassin DP, Rondeau D. Aggregate modeling of fast-acting demand response and
control under real-time pricing. Appl Energy 2016;181:288–98.

[23] Alibabaei N, Fung AS, Raahemifar K, Moghimi A. Effects of intelligent strategy
planning models on residential HVAC system energy demand and cost during the
heating and cooling seasons. Appl Energy 2016;185:29–43.

[24] Gu C, Yan X, Yan Z, Li F. Dynamic pricing for responsive demand to increase dis-
tribution network efficiency. Appl Energy 2017;205:236–43.

[25] Allcott H. Rethinking real-time electricity pricing. Resour Energy Econ
2011;33(4):820–42.

[26] Gomez JA, Anjos MF. Power capacity profile estimation for building heating and
cooling in demand-side management. Appl Energy 2017;191:492–501.

[27] Morales JM. Point estimate schemes to solve the probabilistic power flow. Reliab
Eng Syst Safety 2007;22(4):1594–601.

[28] Chao H. Price-responsive demand management for a smart grid world. Elect J
2010;23(1):7–20.

[29] Ihara S, Schweppe FC. Physically based modeling of cold load pickup. IEEE Trans
Power App Syst 1981;100(9):4142–50.

[30] Bhattacharyya K, Crow ML. A fuzzy logic based approach to direct load control.
IEEE Trans Power Syst 1996;11(2):708–14.

[31] Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst
Man Cybernet 1993;23(3):655–85.

[32] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Trans Syst Man Cybernet 1985;15(1):116–32.

[33] Persky J. Retrospectives: the ethology of homo economicus. J Econ Perspect
1995;9(2):221–31.

[34] Epanechnikov VA. Non-parametric estimation of a multivariate probability density.
Theory Probab Appl 1969;14:153–8.

[35] Molina-García A, Kessler M, Fuentes JA, Gómez-Lázaro E. Probabilistic character-
ization of thermostatically controlled loads to model the impact of demand response
programs. IEEE Trans Power System 2011;26(1):241–51.

[36] Bowman AW, Azzalini A. Applied smoothing techniques for data analysis. New
York: Oxford University Press Inc.; 1997.

D. Xie et al. Applied Energy 216 (2018) 338–347

347

http://refhub.elsevier.com/S0306-2619(18)30130-2/h0010
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0010
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0015
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0015
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0020
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0020
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0020
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0025
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0025
http://refhub.elsevier.com/S0306-2619(18)30130-2/h9000
http://refhub.elsevier.com/S0306-2619(18)30130-2/h9000
http://refhub.elsevier.com/S0306-2619(18)30130-2/h9000
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0035
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0035
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0035
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0040
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0040
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0045
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0045
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0050
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0050
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0050
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0055
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0055
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0055
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0055
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0060
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0060
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0060
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0065
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0065
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0065
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0075
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0075
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0075
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0080
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0080
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0085
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0085
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0090
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0090
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0090
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0095
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0095
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0095
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0100
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0100
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0100
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0105
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0105
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0110
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0110
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0115
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0115
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0115
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0120
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0120
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0125
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0125
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0130
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0130
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0135
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0135
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0140
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0140
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0145
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0145
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0150
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0150
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0155
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0155
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0160
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0160
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0165
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0165
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0170
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0170
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0175
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0175
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0175
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0180
http://refhub.elsevier.com/S0306-2619(18)30130-2/h0180

	Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals
	Introduction
	Individual TCL model
	Framework and electric-thermal model
	Consumer satisfaction quantization
	Maximum satisfaction control strategies

	ORC evaluation of aggregated heterogeneous TCLs
	Moment estimation method
	Probability density estimation method
	The first stage
	The second stage


	Case studies
	The test system
	ORC evaluation with insufficient data
	ORC evaluation in actual case studies
	Introduction of the pilot project
	Case studies of proposed method applications


	Conclusions
	Acknowledgements
	References




