
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Value-based Data Governance and Security 
Protection for Virtual Power Plants Aggregated 

by Demand-side Flexible Loads
Jiabao Li, Student Member, IEEE, Hongxun Hui, Senior Member, IEEE, Yonghua Song, 
Fellow, IEEE, Ye Chen, Member, IEEE, Tao Chen, Member, IEEE, and Pierluigi Siano, 

Senior Member, IEEE

Abstract——Virtual power plants (VPPs) aggregated by de‐
mand-side flexible loads have become a key mechanism for bal‐
ancing supply and demand in power systems. However, com‐
pared with conventional power plants, VPPs generate vast and 
heterogeneous datasets that are challenging to manage and pro‐
tect effectively. Existing solutions often fail to unlock the full 
value of these data while imposing excessive security costs. This 
paper proposes a value-based data governance and security pro‐
tection framework tailored for VPPs aggregated by demand-
side flexible loads. Within this framework, a real-time data val‐
ue assessment model is developed to dynamically assess the val‐
ue of demand-side flexible loaddata. Furthermore, a fine-
grained data management and protection strategy is introduced 
to enable differentiated governance and security measures. 
These measures are applied across different stages of the data 
life cycle according to the assessed data value levels. Numerical 
results demonstrate that the proposed framework enhances 
both data protection and operational performance while reduc‐
ing security costs. Moreover, it promotes data circulation and 
value creation, and supports the sustainable and intelligent 
transformation of modern power systems.

Index Terms——Virtual power plant, flexible load, data valua‐
tion, data governance, data security, security protection.

I. INTRODUCTION 

AS the world increasingly prioritizes sustainable energy 
solutions, the integration of renewable energy sources 

into power systems is becoming a crucial focus. However, 
the continuous integration of renewable energy sources has 
made the power supply highly intermittent [1]. The resulting 
volatility on both the generation and load sides has com‐
pounded the pressure on maintaining the real-time balance. 
The traditional operational mode is facing severe challenges 
in smoothing load fluctuations. Consequently, the low-car‐
bon and stable operation of power systems urgently requires 
large-scale, high-quality regulation resources. The develop‐
ment of technologies such as the Internet of Things, big da‐
ta, artificial intelligence, and 5G communications has en‐
abled virtual power plants (VPPs) aggregated by demand-
side flexible loads to provide balancing services [2]. Com‐
pared with conventional generators, demand-side flexible 
loads have finer granularity, greater type diversity, and more 
distributed deployment. In urban power systems represented 
by Guangzhou, Shenzhen, Hong Kong, and Macao, these de‐
mand-side flexible loads are growing rapidly. These loads 
have great potential to participate in the regulation and flexi‐
bility services of the power system [3], [4].

At the same time, the volume of data generated by de‐
mand-side flexible loads has grown explosively. These data 
offer significant value, revealing economic and social pat‐
terns and creating new opportunities for the smart transition 
of the power system. Integrating digital technologies with 
power systems allows intelligent decision-making and dy‐
namic resource optimization. Leveraging vast, high-value da‐
tasets and advanced analytics enables more effective regula‐
tion of decentralized demand-side flexible loads. This will al‐
so enhance renewable energy integration and ensure that the 
power system operates safely, efficiently, and sustainably, 
supporting social and economic development. However, as a 
new factor of production, data have unique properties such 
as non-rivalry [5], partial excludability [6], and heterogene‐
ity [7]. These properties challenge traditional governance 
and value assessment systems. Additionally, research on de‐
mand-side flexible load data is still in its early stages, which 
presents several issues. These include inadequate assessment 
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methods, low data utilization efficiency, and difficulties in es‐
tablishing stable data trading markets. Power systems also 
struggle to manage large-scale and diverse data due to the 
absence of unified standards, which leads to redundancy and 
poor data quality. Finally, traditional solutions that rely on 
coarse-grained encryption result in an inefficient allocation 
of security resources and high costs.

To fully harness the regulation capability of demand-side 
flexible loads and enhance renewable energy integration, it 
is crucial to promote efficient data circulation. Achieving 
this requires an effective allocation of security resources and 
improvements in data management, while maintaining robust 
data protection. Therefore, this study develops a value-based 
data governance and security protection framework tailored 
for VPPs aggregated by demand-side flexible loads. This 
framework integrates data value assessment into the fine-
grained data management and protection strategy to enable 
simultaneous improvements in operational efficiency and da‐
ta security.

The rest of this paper is organized as follows. Section II 
reviews related work. Section III presents the value-based da‐
ta governance and security protection framework. Section IV 
proposes a real-time data value assessment model. In Sec‐
tion V, the feasibility and effectiveness of the proposed 
framework are verified through experiments and analysis. 
Section VI summarizes the paper and discusses future work.

II. LITERATURE REVIEW OF RELATED WORK 

In recent years, research on demand-side flexible loads 
has emerged as a prominent topic in international academic 
literature, focusing on aspects such as load modeling and 
prediction [8], [9] and scheduling optimization and control 
[10], [11]. However, research and applications concerning de‐
mand-side flexible load data remain in their infancy. This 
section elaborates on relevant research from three perspec‐
tives: data value assessment, data governance, and data secu‐
rity.

A. Data Value Assessment

With the smart transition of power systems, the volume of 
generated data often exceeds the system capacity for effec‐
tive utilization. Limited resources necessitate filtering for 
high-quality data to ensure efficient operations. Accurately 
assessing the value of demand-side flexible load data is es‐
sential for optimizing resource allocation, enhancing load 
regulation accuracy, and supporting decision-making. It also 
contributes to the development of power data trading mar‐
kets. Recently, scholars have begun exploring methods to de‐
fine and assess data value using mathematical models. Refer‐
ence [12] introduces a cost-value model for smart meter data 
in demand response systems to optimize data granularity and 
maximize profitability. Reference [13] defines data value 
based on its ability to reduce uncertainty and improve prof‐
its, using parametric and nonparametric estimation methods. 
References [14] and [15] propose a quality-based informa‐
tion value assessment method using Shannon entropy to link 
information value to economic benefits. Reference [16] de‐
velops an end-to-end method to assess data value from a 

cost perspective in multi-energy systems. Reference [17] in‐
troduces a data value assessment method considering inter‐
nal characteristics such as quality and timeliness, as well as 
external factors like electricity prices. This method prioritiz‐
es valuable data for the efficient dispatch of demand-side 
flexible loads in ancillary services.

Despite these efforts, existing methods for data value as‐
sessment in the power sector remain limited in scope, as 
they predominantly emphasize direct economic benefits. This 
focus restricts their adaptability to diverse stakeholders, het‐
erogeneous data characteristics, and varying application sce‐
narios. Consequently, there is a clear need for more compre‐
hensive and context-aware assessment methods that can cap‐
ture the multifaceted nature of data value.

B. Data Governance

The scale and quality of demand-side flexible load data 
are critical for effective load regulation and for safe, low-car‐
bon grid operations. However, the power system, still in its 
smart transition, struggles to manage large-scale, multi-
source, and high-dimensional data [18]. Issues such as redun‐
dancy, poor quality, and high processing costs impede data 
mining and application. Furthermore, fragmented systems 
with inconsistent formats and granularity create data silos, 
obstructing aggregation and sharing. To address these chal‐
lenges, researchers have proposed various data management 
methods. Reference [19] emphasizes the role of big data 
technologies in enhancing data management and analytics. 
Reference [20] proposes a sustainable energy big data cura‐
tion paradigm covering the entire data life cycle. Reference 
[21] introduces a deep learning model to evaluate data gover‐
nance, considering power data density and the impact of ab‐
normal data on system performance.

While these studies have advanced the understanding of 
data sharing and trading mechanisms, they offer limited in‐
sight into the governance of demand-side flexible load data 
from a value perspective. Furthermore, the efficiency of data 
and resource utilization in power systems, especially regard‐
ing demand-side flexible loads, has received limited atten‐
tion. Addressing these gaps is essential for developing gover‐
nance frameworks that enhance operational efficiency while 
maximizing data value.

C. Data Security

Smart metering and load management generate vast vol‐
umes of sensitive data, but current security solutions remain 
inadequate [22]. Traditionally, power systems relied on dedi‐
cated networks and physical isolation for protection [23]. 
However, the integration of public communication networks 
with decentralized resources complicates this isolation, mak‐
ing data security critical for both system stability and user 
privacy. Data breaches and attacks can lead to significant 
economic and social consequences [24]. Several studies have 
proposed approaches to enhance data security in governance 
frameworks. Reference [25] proposes a cloud-based ap‐
proach for big data management in smart grids, utilizing 
identity-based encryption. Reference [26] assesses the vulner‐
abilities of cyber-physical power systems, while [27] uses 
XGBoost to detect and correct false data. Reference [28] 
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presents a security management approach for the power In‐
ternet of Things, using edge-cloud collaboration technology. 
Reference [29] proposes an approach based on distributed da‐
ta storage with homomorphic encryption to enable secure da‐
ta queries. Reference [30] introduces a life cycle-based secu‐
rity management approach for power data. Meanwhile, [31] 
leverages blockchain technology to improve the security, reli‐
ability, and traceability of grid data management.

Although current security solutions protect sensitive infor‐
mation to some extent, they are typically coarse-grained, 
which leads to inefficiencies in resource allocation and in‐
creases security costs, especially in large-scale, distributed 
power systems. The trade-off between security strength and 
system performance remains inadequately addressed. This 
highlights the need for fine-grained, scalable, and cost-effec‐
tive security solutions.

Overall, existing studies have investigated the value, gov‐
ernance, and security of demand-side flexible load data from 
various perspectives. Supplementary Material A Table SAI 
summarizes the reviewed literature. Despite these efforts, 
several critical issues remain unresolved.

1) Due to the nonrivalry of data, data do not degrade or 
diminish after repeated use as traditional commodities do, al‐
lowing multiple parties to utilize the same data simultaneous‐
ly. Moreover, the heterogeneity of data makes the data value 
assessment vary significantly across different users and appli‐
cation scenarios. However, current data value assessment 
methods primarily focus on direct economic benefits, offer‐
ing limited adaptability.

2) Currently, most data governance research focuses on 
broad categories of power-related data, with an emphasis on 
integrating big data technologies into the power industry. 
These studies primarily address data sharing and trading, 
with limited research dedicated to the governance of demand-
side flexible load datafrom a value perspective. In addition, 
few studies focus on improving the efficiency of data and re‐
source utilization in power systems, especially in relation to 

demand-side flexible load data.
3) Existing security solutions in power systems rely on 

coarse-grained strategies, which are insufficient to address 
the challenges posed by widely distributed entities and con‐
tinuously generated large-scale data in modern power sys‐
tems. This leads to inefficient allocation of security resourc‐
es and excessively high security costs. As a result, there is 
often a trade-off between security strength and system perfor‐
mance, which needs to be more effectively balanced.

To bridge these research gaps, this paper proposes a value-
based data governance and security protection framework tai‐
lored for VPPs aggregated by demand-side flexible loads. 
Within this framework, a real-time data value assessment 
model is developed based on multiple indicators such as da‐
ta quality, timeliness, security, and application scenarios. 
Based on this assessment, a fine-grained data management 
and protection strategy is introduced, covering the entire da‐
ta life cycle. The demand-side flexible load data are catego‐
rized and graded by assessed value, allowing for differentiat‐
ed governance and security measures. This enables a balance 
between security strength and system performance while re‐
ducing security costs.

III. VALUE-BASED DATA GOVERNANCE AND SECURITY 
PROTECTION FRAMEWORK 

A. Comprehensive Framework

To establish a unified standard for managing and securing 
large-scale demand-side flexible load data, this subsection 
presents a comprehensive framework. As shown in Fig. 1, 
the framework is structured according to the stages of the da‐
ta life cycle and is organized into three hierarchical layers. 
This life-cycle-aware design ensures adaptive and value-
based data governance and security protection to effectively 
address the challenges that arise at different stages of the da‐
ta life cycle.

1)　Terminal Layer
The terminal layer encompasses the metering stage of the 

data life cycle and various terminal devices on the user side. 
At the metering stage, various raw data such as users' elec‐
tricity consumption patterns are captured in real time 
through metering devices. Specifically, data generated by de‐
mand-side flexible loads, including energy storage batteries, 
electric vehicles, and air conditioners, are collected by smart 

meters and other sensors. It is important to clarify that these 
metering devices may vary in granularity and deployment 
scope. The terminal layer accommodates diverse data acquisi‐
tion methods, providing essential data for further analysis 
and serving as crucial support for the entire framework.
2)　Edge Layer

The edge layer encompasses the transmission stage of the 
data life cycle and includes various communication devices 

Fig. 1.　Comprehensive framework for value-based data governance and security protection.
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and network infrastructure. At this stage, data from the termi‐
nal layer are first aggregated and preliminarily processed by 
concentrators, which perform tasks such as data format con‐
version and information compression. The processed data are 
then securely transmitted via devices such as routers and 
gateways. Throughout the transmission process, encryption, 
authentication, and other security measures are employed to 
prevent data theft, tampering, or unauthorized access. These 
measures ensure that data are transmitted accurately and 
timely to their destination. Overall, the edge layer serves as 
a critical component in ensuring the smooth functioning of 
the entire framework.
3)　Management Layer

The management layer encompasses the storage, analysis, 
utilization, and destruction stages of the data life cycle. It 
handles the reception and processing of data transmitted 
from the edge layer. In addition, anomaly detection mecha‐
nisms are essential to ensure the quality and reliability of 
downstream analytics and utilization. This is achieved by 
identifying and addressing erroneous or suspicious data en‐
tries in a timely manner.

In the data storage stage, large-capacity storage devices 
such as disk arrays ensure the secure and long-term retention 
of various types of data. Typically, historical data retention 
spans from several months to multiple years, depending on 
operational requirements and regulatory policies. Maintain‐
ing such extensive datasets enhances forecasting accuracy, 
enables long-term trend analysis, and supports strategic deci‐
sion-making in power system operations. However, the accu‐
mulation of large datasets also presents significant computa‐
tional challenges during storage and analysis. Efficient data 
management and scalable computing infrastructures are there‐
fore essential to handle the increasing volume and complexi‐
ty of data.

In the data analysis stage, high-performance server clus‐
ters and advanced data mining techniques enable in-depth 
analysis of demand-side flexible load data. This analysis 
helps optimize demand-side resource scheduling, accurately 
predict power demand trends, and support decision-making 
in the power system.

In the data utilization stage, secure and reliable data shar‐
ing mechanisms facilitate interoperability between partici‐
pants in the power system, enhancing operational efficiency. 
Additionally, a data trading market can be established by im‐
plementing standard rules and pricing mechanisms for data 
transactions. Clear policies for data ownership and access 
control must be established to define access rights and usage 
scope and to prevent unauthorized usage or data breaches.

Finally, in the data destruction stage, data that have 
reached their expiration date are securely erased through 
physical destruction of storage media or by overwriting. Pro‐
fessional data destruction techniques ensure that sensitive in‐
formation is fully deleted, preventing data breaches or mis‐
use. In summary, the management layer is pivotal for en‐
abling data circulation, maximizing data value, and ensuring 
the efficient and secure operation of the power system.

In summary, this framework ensures consistent quality 
management while enhancing security through tailored mea‐

sures in each stage. By incorporating physical devices and 
real-world interactions, the framework accurately represents 
data flow, making it practical to implement. Ultimately, this 
structured framework improves data quality and security, 
leading to better decision-making, cost saving, and enhanced 
power system performance. Additionally, high data quality 
and security promote efficient data circulation and aggrega‐
tion.

B. Fine-grained Data Management and Protection Strategy

To implement a fine-grained data management and protec‐
tion strategy, it is essential to categorize and grade data in 
different stages of the data life cycle. Categorization stan‐
dards can be adapted to specific needs. For example, this pa‐
per categorizes demand-side flexible load data by user type. 
Once categorized, the data are first assessed for their value 
and then further graded into three levels within each catego‐
ry, as illustrated in Fig. 2. This process can be formalized as:
DCjGk

=

{XiÎD|C(Xi ):D® { }C1C2C3 }ÙG(Xi ):D® { }G1G2G3

(1)

where D is a set consisting of datasets of demand-side flexi‐
ble loads, with Xi being the ith dataset; DCjGk

 is a set consist‐

ing of datasets that are categorized into category Cj and grad‐
ed at level Gk; C(Xi ) is a function that categorizes each data‐
set Xi into one of three categories: C1 for industrial users, C2 
for commercial users, and C3 for residential users; and 
G(Xi ) is a function that assigns a value level to each dataset: 
G1 for high value, G2 for medium value, and G3 for low val‐
ue.

This data categorization and grading scheme allows for a 
more precise reflection of different electricity consumption 
patterns and enables the development of targeted security 
measures. Adopting differentiated governance and security 
measures provides a foundation for optimizing demand-side 
management, and ultimately improves the overall efficiency 
and security of the power system.

Different categories of demand-side flexible load data not 
only display distinct characteristics in terms of load patterns, 
but also vary significantly in their importance with respect 
to economic impact and data security. The data from industri‐
al users generally reflect higher load levels with relatively 
stable power consumption curves. These data often include 
sensitive information related to production efficiency and 
equipment operation, necessitating stringent security. Com‐
mercial loads tend to fluctuate in cycles, with noticeable 

Fig. 2.　Overall structure of data categorization and grading.
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variations in load curves between weekdays and weekends. 
Such data can provide valuable insights into business activi‐
ty, customer traffic, and other economic indicators, making 
them particularly useful for economic analysis. In contrast, 
the data from residential users typically show more pro‐
nounced daily fluctuations, influenced by external factors 
such as weather and seasonal changes, leading to a high de‐
gree of randomness and diversity. Such data reveal house‐
hold electricity consumption patterns and lifestyle habits, 
which are highly valuable for research but require strong pri‐
vacy protection.

Based on the grade, differentiated governance and security 
measures are developed for demand-side flexible load data 
at each value level. The primary differences involve the data 
retention period and the strength of security measures. High-
value data are retained for the longest period to enable con‐
tinuous analysis and utilization. They are protected with lon‐
ger key lengths and more robust cryptographic algorithms. 
For medium-value data, the focus is on balancing security 
and efficiency. Medium-length keys provide adequate protec‐
tion while maintaining processing efficiency. Although these 
data are retained for a shorter period than high-value data, 
they are still long enough to meet operational needs. Low-
value data are retained for the shortest period to minimize 
storage costs and optimize system resource usage. They are 
protected with lightweight cryptographic algorithms to en‐
sure efficiency while maintaining necessary security.

In summary, this fine-grained data management and pro‐
tection strategy enhances data security, optimizes system re‐
source utilization, and reduces security costs by aligning dif‐
ferentiated governance and security measures with data val‐
ue. Furthermore, this strategy integrates with the data life cy‐
cle, allowing for dynamic adjustments to governance and se‐
curity measures in each stage. This ensures the effective 
management and protection of demand-side flexible load da‐
ta throughout the entire life cycle.

C. Data Security Measures

To ensure the security and privacy of demand-side flexi‐
ble load data throughout the entire life cycle, encryption re‐
mains the most fundamental and effective measure. By en‐
crypting the data, unauthorized users are prevented from in‐
terpreting the original content. The advanced encryption stan‐
dard (AES) is a widely adopted cryptographic algorithm, ex‐
tensively applied in smart grids and other critical infrastruc‐
tures [32] due to its high computational efficiency in large-
scale data processing scenarios.

AES is a block cipher that operates on 128-bit plaintext 
blocks and supports key lengths of 128, 192, or 256 bits, 
corresponding to AES-128, AES-192, and AES-256. The 
number of encryption rounds is determined by the key 
length: 10 rounds for 128-bit keys, 12 rounds for 192-bit 
keys, and 14 rounds for 256-bit keys [33]. According to 
Shannon's principles of cryptographic design, AES trans‐
forms plaintext into ciphertext through a sequence of substi‐
tution-permutation operations that provide strong confusion 
and diffusion. It implements these operations using a struc‐
tured round function comprising four core steps [34], which 

are described in Supplementary Material A.
Formally, AES encryption is defined as:

C =EK (P) (2)

where PÎ{01}128 is the plaintext block; KÎ{01m } 
(mÎ{128192256}) is the secret key; and EK denotes the 
AES encryption function parameterized by the key K.

The corresponding decryption function is:
P =DK (C)

where DK is the AES decryption function parameterized by 
the key K.

AES provides robust resistance against known cryptanalyt‐
ic techniques such as linear cryptanalysis, differential at‐
tacks, and meet-in-the-middle attacks. The selection of key 
length directly impacts the security level and computational 
overhead. Longer key lengths enhance brute-force resistance 
but incur additional processing cost. In practice, AES-128 is 
suited for high-throughput, low-latency scenarios such as re‐
al-time control commands or short-interval forecasting, 
where it provides sufficient security with minimal computa‐
tional overhead. AES-192 offers a balance between security 
and efficiency, making it appropriate for medium-term data 
protection like daily load archiving or monthly billing. AES-
256 is employed for high-value, sensitive data that require 
long-term storage and stringent security. Its 256-bit key pro‐
vides the highest security margin, effectively mitigating risks 
from future computational advances and ensuring privacy 
compliance.

IV. REAL-TIME DATA VALUE ASSESSMENT MODEL 

Accurately assessing the value of demand-side flexible 
load data is essential for optimizing power system resource 
allocation and improving operational efficiency. However, da‐
ta value depends on various factors, including scale, quality, 
multi-source integration, and application scenario, making it 
difficult to capture with a single metric. This section intro‐
duces a generalized, multi-dimensional real-time data value 
assessment model that accounts for intrinsic, application, and 
security value. The model is decoupled from direct econom‐
ic metrics and aims to optimize resource allocation within 
the value-based data governance and security protection 
framework. It improves data utilization efficiency and en‐
hances adaptability across different application scenarios. 
Specifically, the data value can be expressed as:

VoDγ (X)=VoI(X)+VoAγ (X)+VoS(X) (3)

where X =[x1x2xn ] is the demand-side flexible load data‐
set, containing n data points x1x2xn collected by smart 
meters; VoDγ (X) is the value of the dataset X in the applica‐
tion scenario γ; VoI(X) is the intrinsic value of the dataset 
X, reflecting its quality, timeliness, and other inherent charac‐
teristics that do not depend on specific application scenarios; 
VoAγ (X) is the application value of the dataset X in the ap‐
plication scenario γ, depending on how effectively the data 
support specific use cases in the scenario; and VoS(X) is the 
security value of the dataset X, accounting for the sensitivity 
of the data and the risks associated with potential breaches 
or unauthorized access.
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Figure 3 illustrates the key computational steps for assess‐
ing intrinsic, application, and security values, thereby facili‐

tating a clearer understanding of the sequential relationships 
among the assessment components.

It is worth noting that (3) employs an equal-weighted addi‐
tive structure, wherein VoI, VoAγ, and VoS contribute equally 
to the overall composite value. This design choice enhances 
model interpretability, facilitates implementation, and pro‐
vides a neutral and transparent baseline in the absence of de‐
tailed domain-specific knowledge of data value assessment. 
Such an approach is particularly useful in early-stage system 
deployments or in the design of data governance frame‐
works, where transparency and interpretability are critical. 
Moreover, as discussed in [17], equal-weighted models have 
demonstrated effectiveness in similar scenarios involving co‐
ordinated optimization within power-communication net‐
works. Nevertheless, it is acknowledged that equal weighting 
may not be universally appropriate across all application sce‐
narios. Hence, the equal-weighted model should be regarded 
as a foundational approximation that can be further refined 
to accommodate scenario-specific requirements.

A. Intrinsic Value

The intrinsic value of data is determined primarily by the 
inherent characteristics, independent of specific application 
scenarios. Key factors that define this intrinsic value include 
data quality and timeliness. Only when data possess high in‐
trinsic value can they effectively support various applica‐
tions. The intrinsic value of data can be quantified as:

VoI(X)=QoD(X)× ToD(X) (4)

where QoD(X) is the quality of the dataset X, which reflects 
how accurate and complete the data are for their intended 
purpose; and ToD(X) is the timeliness of the dataset X, 
which reflects the relevance of the data with respect to the 
time it is used or analyzed.

1) Data quality. Data quality is a comprehensive concept 
that varies depending on the context, and there is no univer‐
sal definition [35]. In this paper, data quality refers to the ac‐
curacy and completeness of data for its intended purpose. 
Data quality can fluctuate as it moves between devices and 
undergoes processing. For instance, data precision might de‐
grade during transmission, lowering its quality. Conversely, 
techniques such as smoothing and interpolation can improve 
data quality by correcting anomalies. High-quality data en‐

sure reliable decision-making, which is crucial for the effi‐
cient operation of the power system. In contrast, poor-quali‐
ty data can result in inaccurate strategies and may compro‐
mise the grid safety and stability. The data quality can be ex‐
pressed as:

QoD(X)=
n -A(X)

n
(5)

where n is the number of data points in the dataset X; and 
A(X) is the number of outliers in the dataset X. Outliers are 
defined as missing values or unreasonable deviations caused 
by metering or transmission errors. These outliers are detect‐
ed using the standard deviation method. Specifically, the 
mean μ and standard deviation σ of the dataset X are first 
calculated. The normal range is defined as μ ± kσ, where k is 
an adjustment factor. Data points outside this range are 
flagged as outliers. In practical applications, k can be cali‐
brated based on historical error statistics and validated using 
expert-labeled datasets.

2) Data timeliness. Data timeliness refers to the degree to 
which data are available and accessible at the moment they 
are needed [36]. Timeliness is critical to intrinsic value—da‐
ta become less useful as they age, losing relevance for deci‐
sion-making. Demand-side flexible load data with high time‐
liness, available shortly after generation, are especially valu‐
able for making prompt and effective decisions. Conversely, 
outdated data, with low timeliness, may no longer accurately 
represent current conditions, leading to suboptimal decisions. 
The data timeliness can be expressed as:

ToD(X)=
1

ωt + 1
    "ωÎR> 0"tÎR³ 0 (6)

where t is the age of the dataset X; and ω is an adjustment 
factor that accounts for the varying decay rates of data time‐
liness across different situations. ω can be adjusted accord‐
ing to application latency requirements or inferred from his‐
torical decision performance. Specifically, let tm represent the 
time when the load data are recorded, and tc represent the 
time when they are assessed. The age t is the difference be‐
tween these two timestamps. As time passes and t increases, 
data timeliness decreases, approaching a minimum value of 
0. When tc = tm, the timeliness reaches its maximum value 

Fig. 3.　Key computational steps for assessing intrinsic, application, and security values.
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of 1.

B. Application Value

The application value of data can vary significantly de‐
pending on the specific scenario, making it difficult to de‐
fine with a single measure. To illustrate this concept, this pa‐
per uses the scenario of demand response evaluation as an 
example. Evaluating the impact of demand response is essen‐
tial for its successful implementation. By comparing load da‐
ta before and after a demand response event, the effective‐
ness of these measures and their impact on the stability and 
efficiency of the power system can be evaluated. This evalu‐
ation helps to optimize demand response strategies to in‐
crease the overall benefits to the power system. In this sce‐
nario, the application value of demand-side flexible load da‐
ta can be expressed using the peak performance index. This 
index is defined as the ratio of the average load reduction 
during a demand response event to the user's maximum peak 
load demand [37]. A higher peak performance indicates 
greater enthusiasm from the user in participating in demand 
response, as well as higher potential for effective response. 
Consequently, data in such cases hold greater application val‐
ue and can significantly influence the design of future de‐
mand response strategies.

Therefore, the application value of data can be expressed 
as:

VoAγ (X)=
-
Ps

P max
p

(7)

where 
-
Ps is the average load reduction during the demand re‐

sponse event based on the dataset X; and P max
p  is the user's 

maximum peak load demand observed in the dataset X.
To calculate 

-
Ps, the baseline load must first be estab‐

lished. Since the baseline load represents the full daily load 
profile, it is treated as a vector, with each element corre‐
sponding to a specific time interval. For a given time inter‐
val PT, the five most recent typical days with the highest 
daily load are selected. The uncorrected baseline load vector 
Pb is then calculated by averaging the load values at each 
time interval across these days. However, since random fac‐
tors such as climate can influence the load, the uncorrected 
baseline load must be adjusted. The corrected baseline load 
vector Pkb is computed as:

Pkb =
------
Pkh
-
Ph

Pb (8)

where 
------
Pkh is the average load recorded during the same time 

intervals within the two hours before the demand response 
event; and 

-
Ph is the average historical load for the same 

time intervals on the days used to establish the uncorrected 
baseline load. The adjustment accounts for external varia‐
tions, ensuring the corrected baseline load accurately reflects 
real conditions.

Finally, 
-
Ps can be calculated as:

-
Ps =

------
Pkb -

-
P (9)

where 
------
Pkb is the average corrected baseline load during the 

demand response period; and 
-
P is the actual average load 

during that period. The difference between the corrected 

baseline and the actual load represents the load reduction 
achieved through the demand response event.

C. Security Value

Information entropy is a fundamental tool for measuring 
data uncertainty, playing a key role in communication theo‐
ry. In data security, it is commonly used to quantify privacy 
risks, assess the potential for data breaches, and identify 
emerging security threats [38]. In this paper, information en‐
tropy is applied to assess the security value of demand-side 
flexible load data, which refers to the required level of pro‐
tection for the data. Higher entropy in the data typically indi‐
cates greater randomness in electricity consumption, reduc‐
ing the likelihood of sensitive information being exposed. As 
a result, the data have a lower security value. Conversely, da‐
ta with lower entropy suggest more predictable consumption 
patterns, which may potentially reveal sensitive information. 
These data have a higher security value and therefore re‐
quire stricter security measures.

To calculate information entropy, it is essential to first ap‐
proximate the probability distribution of the random vari‐
ables. This paper employs kernel density estimation to esti‐
mate the probability density function:

f ̂ (x)=
1
nh∑i = 1

n

K ( x - xi

h ) (10)

where h is the bandwidth;; and K ( × ) is the kernel function.
Common kernel functions include the Gaussian kernel, 

uniform kernel, and triangular kernel functions. In this pa‐
per, the Gaussian kernel function (11) is chosen.

K(x)=
1

2π
e
-

x2

2 (11)

However, traditional kernel density estimation assumes 
that data distributions are smooth across the real number 
range. In practice, demand-side flexible load data often have 
boundary constraints, as they cannot be negative. To address 
this, mirror data are added at the boundaries using the reflec‐
tion method [39] to mitigate boundary effects:

f ̂ (x)=
1
nh∑i = 1

n é

ë
êêêê

ù

û
úúúúK ( )x + xi

h
+K ( )x - xi

h
(12)

Differential entropy as an extension of classical informa‐
tion entropy is used to calculate the entropy of demand-side 
flexible load data in this paper:

H(X)=-∫¥-¥ f ̂ (x)log2 f ̂ (x) dx (13)

where H(X) is the entropy of the dataset X.
The security value is inversely proportional to the informa‐

tion entropy, given by:

VoS(X)= δ
1

H(X)+ 1 (14)

where δ is an adjustment factor used to scale the security 
value. The parameter δ can be calibrated based on privacy 
risk assessments, domain-specific regulatory requirements, 
and policy constraints.

Once the data value assessment is complete, the data can 
be further graded into different levels. Assuming that the da‐
ta values follow a normal distribution within the interval 
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[03], the probability density function is given by(15), where 
the mean μ is 1.5 and the standard deviation σ is 0.5.

f (x)=
1

σ 2π
e
-

(x - μ)2

2σ2

(15)

As shown in Fig. 4, data in the range of [01) are graded 
as low-value, data in the range of [12) as medium-value, 
and data in the range of [23] as high-value.

V. CASE STUDY

To verify the effectiveness of the proposed framework, 
this section presents a case study on value-based data gover‐
nance and security protection for VPPs aggregated by de‐
mand-side flexible loads. The framework is specifically ap‐
plied to the data storage stage, within the scenario of de‐
mand response evaluation.

A. Test System

The data used in this case study are derived from load pro‐
files collected from a selected group of users in a Chinese 
city who participated in peak-load regulation. The dataset in‐
cludes user load conditions on typical days during two de‐
mand response events, with data collected every 15 min. 
Both events ran from 14:00 to 15:00, during which the regu‐
lation focused on flexible loads. The two events occurred 
two months apart, with a total of 498 participants—330 in 
the first event and 168 in the second event. Six months after 
the first event, the proposed framework was applied to the 
stored data. Table I summarizes the key metrics of the two 
demand response events.

B. Data Categorization

The first step, as introduced in Section III-B, is data cate‐
gorization. The raw dataset is categorized into three distinct 
categories based on user types: industrial, commercial, and 
residential users. Specifically, industrial users generally corre‐

spond to large-scale facilities with relatively stable and high-
volume energy consumption, such as manufacturing plants 
or production lines. Commercial users mainly include public 
buildings or enterprises with more variable load profiles in‐
fluenced by business hours and occupancy patterns. Residen‐
tial users represent individual households with diverse and 
less predictable consumption behaviors. The dataset consists 
of 121 industrial users, 256 commercial users, and 121 resi‐
dential users.

C. Data Value Assessment

Next, commercial users are the main focus of further anal‐
ysis. The demand-side flexible load data for each of the 256 
commercial users are first assessed for value and then grad‐
ed. The value assessment process is illustrated in Fig. 5, 
where the value is assessed across three dimensions: intrin‐
sic value, application value, and security value. The assess‐
ment results for each dimension are displayed using a heat 
map.

The heat map of intrinsic value shows that most commer‐
cial users' data have relatively good intrinsic value, while on‐
ly a small portion exhibits poor value. Specifically, most 
light blue squares fall within the range of 0.6-0.8, indicating 
stable and moderately timely data. Some dark blue squares 
show values of 0.8-0.9, reflecting highly reliable and timely 
data. By contrast, several dark red squares correspond to 
very low values, around 0-0.2, caused by missing records or 
abnormal data. Orange squares, typically in the range of 0.2-
0.6, indicate data with occasional outliers. This numerical 
distribution clearly highlights how timeliness and quality 
jointly determine intrinsic value.

The heat map of application value reflects the actual con‐
tribution to demand response. Darker squares correspond to 
values of 0.8-1.0, indicating active participation and signifi‐
cant potential. Conversely, lighter yellow squares with val‐
ues around 0-0.3 indicate weaker contribution potential. A 
large portion of the squares are orange, showing values of 
0.3-0.8, which suggest moderate support for demand re‐
sponse.

The heat map of security value shows that most data have 
a relatively low security value. This is mainly due to the ran‐

Fig. 4.　Grading of load data based on value distribution.

TABLE I
KEY METRICS OF DEMAND RESPONSE EVENTS

Item

Number of participants

Event duration

Data collection interval

Application of proposed 
framework

Event 1

330

14:00-15:00

15 min

Six months after 
Event 1

Event 2

168

14:00-15:00

15 min

Four months after 
Event 2

Fig. 5.　Value assessment process for load data of 256 commercial users.
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domness of electricity consumption patterns, which reduces 
the likelihood that sensitive information will be exposed and 
implies fewer security resources are required. However, a 
few green squares show higher values, around 0.6-0.8, indi‐
cating users with more predictable consumption patterns. 
Their data could reveal sensitive information and therefore 
require stronger protection. Interestingly, several dark purple 
squares show values dropping to nearly 0, where outliers ob‐
scure the consumption pattern so strongly that the data be‐
come essentially non-informative from a security perspective.

Finally, based on the composite assessment, the value of 
the demand-side flexible load data for each of the 256 com‐
mercial users was determined. Specifically, 7 users provided 
high-value data (values in the range of [23]), 236 users pro‐
vided medium-value data (values in the range of [12)), and 
13 users provided low-value data (values in the range of 
[01)). In the composite heat map, red squares represent high-
value data. These data are timely, accurate, and highly con‐
tributive, but they also require significant security resources 
to prevent sensitive information breaches. Yellow squares 
represent medium-value data, which provide meaningful sup‐
port for load regulation and grid stability, although they are 
less critical and less sensitive than high-value data. Green 
squares indicate low-value data. These are characterized by 
poor quality, limited contribution, and an inability to accu‐
rately reflect the current situation. They require only basic 
security resources.

D. Differentiated Governance and Security Measures

Once the data are graded by value, differentiated gover‐
nance and security measures can be implemented. As previ‐
ously mentioned, the primary differences involve the data re‐
tention period and the strength of security measures. AES 
supports flexible key lengths, enabling hierarchical protec‐
tion based on the value and security requirements of the da‐
ta. Figure 6 compares the security measures used in the pro‐
posed framework with those used in the traditional frame‐
work.

1) Traditional framework: all data are encrypted with the 
highest security level (AES-256) without distinguishing the 
data value.

2) Proposed framework: different security levels of encryp‐
tion (AES-128/192/256) are applied according to the data 
value to achieve hierarchical protection.

Specifically, the traditional framework often fails to recog‐
nize the varying importance and security requirements of dif‐
ferent data. As a result, it tends to apply the strongest en‐
cryption such as AES-256 to all data indiscriminately. How‐
ever, overuse of strong encryption on low-value data leads 
to unnecessary performance overhead. More stringent securi‐
ty measures also complicate management and increase securi‐
ty costs, ultimately reducing system efficiency. Therefore, 
while the traditional framework ensures security, it fails to 
strike a balance between protection and resource efficiency.

In the proposed framework, AES-256, AES-192, and AES-
128 [40] are used to encrypt high-, medium-, and low-value 
data, respectively. Table II shows the comparison of AES-
256, AES-192, and AES-128. AES encryption strength is de‐
termined by key length, which defines the key space size 
[41]. AES-128 offers a key space of 2128, making brute-force 
attacks infeasible with current computing power. AES-192 
provides a key space of 2192, offering greater security. AES-
256 with a key space of 2256 is the most secure and remains 
resistant to future quantum attacks due to the vast number of 
required attempts. From a performance perspective, the com‐
putational complexity of AES increases with key length 
[42]. AES-128 has 10 rounds of encryption, AES-192 has 
12, and AES-256 has 14. More rounds increase encryption 
time and resource usage, raising security costs. Therefore, 
AES-128 not only meets the basic security requirements for 
demand-side flexible load data but is also resource-efficient 
and provides higher encryption speed, making it suitable for 
low-value data that can be destroyed after the required reten‐
tion period. In contrast, AES-256 offers stronger protection 
but requires more resources and has lower encryption effi‐
ciency. AES-192 strikes a balance between security and per‐
formance, falling between AES-128 and AES-256. Accord‐
ingly, AES-192 is designated for medium-value data, while 
AES-256 is recommended for high-value data that require 
long-term storage and usage. This hierarchical protection en‐
sures data security, improves resource utilization, and reduc‐
es security costs.

To evaluate the effectiveness of the proposed framework, 
we compared it with a traditional framework by measuring 
the time and memory usage required to encrypt the commer‐
cial users' data. We also assessed the overall information en‐
tropy [43] after encryption. The experiment was conducted 
on a personal computer with an Intel(R) Core(TM) i7-8565U 
CPU @ 1.80 GHz, Intel(R) UHD Graphics 620, and NVIDIA 

Fig. 6.　Comparison of security measures between proposed and traditional 
frameworks.

TABLE II
COMPARISON OF AES-256, AES-192, AND AES-128

AES

AES-128

AES-192

AES-256

Key 
length (bit)

128

192

256

Key space

2128 » 3.4 ´ 1038

2192 » 6.3 ´ 1057

2256 » 1.2 ´ 1077

Number 
of rounds

10

12

14

Security 
level

Standard

Strong

Highest

Performance

High

Medium

Low
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GeForce MX150. As shown in Table III, the overall informa‐
tion entropy after encryption is similar for both frameworks. 
This indicates that the proposed framework provides nearly 
the same level of data security as the traditional framework. 
However, the proposed framework requires 16.24% less 
memory and achieves a 18.60% faster execution speed com‐
pared with the traditional framework. The findings confirm 
that differentiated governance and security measures can ef‐
fectively ensure data security and alleviate the computational 
burden on the system, thereby reducing unnecessary security 
costs and optimizing resource utilization.

Another key difference is the data retention period. Tradi‐
tional framework retains all data for the maximum period, 
overlooking varying storage needs and raising risks. By com‐
parison, differentiated governance and security measures en‐
sure that sensitive data are securely destroyed after their use‐
ful life, whcih frees up storage and improves efficiency. To 

meet audit, compliance, or reporting requirements, the sys‐
tem must retain demand-side flexible load data for at least 3 
years with a maximum retention period of 5 years. Figure 7 
shows the comparison of the governance measures between 
the proposed and traditional frameworks. The gray area indi‐
cates that data have been securely destroyed and the corre‐
sponding storage resources have been released.

1) Traditional framework: retaining all data for the maxi‐
mum period of 5 years prevents the premature deletion of 
critical data.

2) Proposed framework: retention periods are differentiat‐
ed according to data value, after which the data are securely 
destroyed, releasing storage space for new data. Specifically, 
high-value data are retained for 5 years to support long-term 
decision-making and trend analysis. Medium-value data are 
retained for 4 years to meet business and short-term analysis 
needs. Low-value data are retained for 3 years to comply 
with regulations and audit requirements.

The differentiated governance and security measures opti‐
mize storage resource utilization. Specifically, compared 
with the traditional framework, the proposed framework en‐
ables the early release of 5% of storage capacity by the end 
of the third year, an additional 92% by the end of the fourth 
year, and about 97% in total before the fifth year. The re‐
maining 3% is released at the maximum retention period by 
the end of fifth year. In contrast, the traditional framework 
retains all data until the end of the maximum retention peri‐
od, keeping storage resources fully occupied throughout. The 
comparison of the performance of governance measures be‐
tween the two frameworks is summarized in Table IV.

In summary, the numerical results demonstrate that the 

proposed framework enhances both data protection and oper‐
ational performance while reducing security costs.

VI. CONCLUSION 

This paper proposes a value-based data governance and se‐
curity protection framework tailored for VPPs aggregated by 
demand-side flexible loads, addressing challenges in secur‐
ing large-scale data while optimizing operational perfor‐
mance. The key contribution is a real-time data value assess‐
ment model using multi-dimensional indicators such as data 
quality, timeliness, security, and application scenarios. It also 
introduces a fine-grained data management and protection 
strategy covering the entire data life cycle. Demand-side 
flexible load data are categorized and graded by assessed val‐

TABLE III
COMPARISON OF THE PERFORMANCE OF SECURITY MEASURES BETWEEN 

PROPOSED AND TRADITIONAL FRAMEWORKS

Framework

Traditional 
framework

Proposed 
framework

Overall information 
entropy (bit)

7.9982

7.9980

Execution time 
(s)

0.0629

0.0512

Memory usage 
(MB)

0.2211

0.1852

Fig. 7.　Comparison of governance measuress between proposed and traditional frameworks.

TABLE IV
COMPARISON OF PERFORMANCE OF GOVERNANCE MEASURES BETWEEN 

PROPOSED AND TRADITIONAL FRAMEWORKS.

Time

The third year

The fourth year

The fifth year

Storage release status

Traditional framework

No release

No release

Release 100%

Proposed framework

Release 5%

Release 92%

Release 3%

10
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ue, allowing for differentiated governance and security mea‐
sures. Numerical results demonstrate the effectiveness of the 
proposed framework in enhancing data protection and re‐
source utilization, striking a balance between security 
strength and system performance while reducing security 
costs.

However, the proposed real-time data value assessment 
model focuses on demand-side flexible load data in a single 
scenario and assumes static, equal-weighted contributions of 
value dimensions. While simplifying implementation, this 
may overlook scenario-specific priorities in dynamic or risk-
sensitive contexts. Future work will extend the real-time da‐
ta value assessment model to multiple grid scenarios and 
adopt adaptive weighting mechanisms based on learning or 
optimization techniques. Additionally, it could be improved 
through strategies such as periodic re-evaluation and sliding 
window analysis to better capture the temporal evolution of 
data importance. Integrating time-series models (e. g., long 
short-term memory (LSTM) networks or transformer archi‐
tectures) would further strengthen the ability to model timeli‐
ness and track changes in data value. Furthermore, multiple 
adjustable parameters governing data quality range, timeli‐
ness decay, and security value scaling are currently set em‐
pirically. Automated tuning using methods such as Bayesian 
optimization or reinforcement learning is expected to im‐
prove the generalizability and robustness of the data value 
assessment across diverse scenarios.

In conclusion, the proposed framework promotes data cir‐
culation and value creation, supporting the sustainable and 
intelligent transformation of modern power systems.
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