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H I G H L I G H T S

• The application value of SES in rural distribution network is studied.
• A cooperative operation strategy for multi-DPV clusters and SES is proposed.
• A two-stage SES configuration model is constructed.
• The synergistic effect of SES and DR is analyzed.
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A B S T R A C T

The integration of energy storage (ES) systems with distributed photovoltaic (DPV) generation in rural Chinese 
distribution networks enhances self-consumption while mitigating grid congestion. However, the geographically 
dispersed nature of rural DPV deployment leads to suboptimal storage utilization when configuring ES for in-
dividual village-level DPV clusters, primarily due to the absence of inter-cluster energy exchange. This opera-
tional inefficiency significantly escalates both initial investment and maintenance costs. In this paper, 
considering the complementarity between outputs of DPV clusters and residential loads in different villages, a 
cooperative operation strategy for multi-DPV clusters and shared energy storage (SES) is proposed with the goal 
of improving the self-consumption and self-sufficiency. Then, a comprehensive life-cycle cost-income analysis 
framework and a two-stage SES optimization configuration model is developed. The proposed model is solved by 
the particle swarm algorithm with improved adaptive inertia weights (APSO). A rural DPV demonstration zone in 
northern China serves as the case study, where multiple scenarios incorporating various ES configurations and 
demand response (DR) implementations are designed. Comparative analysis reveals that SES outperforms 
distributed energy storage (DES), boosting PV self-consumption by 2.44 %, increasing power self-sufficiency by 
2.26 %, and lowering levelized annual costs per rural household by 2.54 %. When integrated with DR, these 
benefits increase to 3.46 %, 3.20 %, and 3.72 % respectively. The research outcomes provide useful reference for 
investment planning and coordinated operation of multi-DPV clusters and shared storage systems, facilitating 
sustainable development of DPV in rural areas.

1. Introduction

In recent years, distributed photovoltaic (DPV) systems in China 
have achieved significant leapfrog development, playing a pivotal role 
in ensuring reliable power supply, accelerating the green energy 

transition, and fostering rural income growth and employment oppor-
tunities [1–2]. By the end of 2024, the cumulative installed capacity of 
DPV systems reached 370 GW, with an annual power generation of 
346.2 TWh, representing 41 % of the total PV power generation [3]. 
China’s abundant and underutilized rooftop resources in rural areas 
offer a solid foundation for the deployment and development of DPV 
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Nomenclature

Cpv
con,n Construction cost of the DPV cluster in the nth village 

(CNY)
Cpv

inv,n,h Equipment investment of the DPV cluster for the hth 

household in the nth village (CNY)
Cpv

ins,n,h Installation cost of the DPV cluster for the hth household in 
the nth village (CNY)

H Total number of households installing the DPV system
Cu,inv Unit capacity cost of the DPV system (CNY/kW)
Ppv

rat,n,h Rated capacity of the DPV system of hth household in the 
nth village (kWh)

δ1 Ratio of installation cost to equipment investment of the 
DPV system (%)

Cpv
mai,n Operation and maintenance cost of the DPV system in nth 

village (CNY)
δ2 Ratio of operation and maintenance cost to construction 

cost of the DPV system (%)
Ces

con Construction cost of the ES system (CNY)
Ces

inv Equipment investment of the ES system (CNY)
Ces

ins Installation cost of the ES system (CNY)
Cu,cap Unit capacity cost of the ES system (CNY/kWh)
Cu,pow Unit power cost of the ES system (CNY/kW)
Qes

cap Rated capacity of the ES system (kWh)
Ees

pow Rated power of the ES system (kW)
Ces

u,ins Unit capacity installation cost of the ES system (CNY/kWh)
Ces

mai Operation and maintenance cost of the ES system (CNY)
δ3 Operation and maintenance cost rate of the ES system (%)
Ces

rep Battery and equipment replacement cost of the ES system 
(CNY)

Ces
pur,m Purchase cost of the mth placement component (CNY)

Ces
rem,m Installation and removal cost of the mth replacement 

component (CNY)
B Replacement frequency of the mth component during the 

project lifecycle
M Number of the components needing replacement
Cgrid

pur,n Annual power purchase cost of the nth village from the 
power grid (CNY)

pgrid
pur,t Electricity price of the power grid in the tth period (CNY/ 

kWh)
Egrid

pur,n,t Electricity purchased by the nth village from the power grid 
in the tth period (kWh)

Rpv
grid,n Annual PV grid-connected income of the nth village (CNY)

Epv
on,n,t PV grid-connected electricity of the nth village in the tth 

period (kWh)
ppv

on,t PV feed-in tariffs of the nth village in the tth period (CNY/ 
kWh)

Epv
gen,n,t PV generation of the nth village in the tth period (kWh)

Esel,n,t Electricity of PV self-generation and self-consumption of 
the nth village in the tth period (kWh)

Epv
com,n,t PV power supplied to surrounding villages from the nth 

village in the tth period (kWh)
Ees

cha,n,t The charging amount of the nth village to the SES system in 
the tth period (kWh)

Ees
dis,n,t The discharge amount of the SES system to the nth village 

in the tth period (kWh)
Rpv

sub,n Initial installation subsidy income of the DPV cluster in the 
nth village (CNY/kWh)

λpv
inv,sub Unit capacity subsidy price of the DPV cluster (CNY/kW)

Res
sub Annual subsidy income of the ES system (CNY)

Ees
dis,t Total discharge amount of the ES system in the tth period 

(kWh)
Ees

cha,t Total charge amount of the ES system in the tth period 
(kWh)

λes
sub,t Subsidy price per unit of the SES system (CNY/kWh)

Rres Residual fixed asset value of the DPV cluster and ES system 
(CNY)

γ Fixed asset residual value rate of the DPV cluster and ES 
system (%)

yt Actual PV output in the tth period of the typical day (kW)
ŷt Predicted PV output in the tth period of the typical day 

(kW)
I The sample size
h(l)

k The PV output of the k-th convolutional kernel at layer l
s The kernel size
ReLU The activation function
Eload

bas,t Total power of residential base load in the tth period (kW)
Eload

bas,k,f ,t Load of the f-th basic electrical device of the k-th 
household in the tth period (kW)

Ω Set of residential base electrical devices
∂ Set of residential adjustable electrical devices
Eload

adj,t Total adjustable load power in the tth period (kW)
Eload

adj,k,j,t Load of the j-th adjustable household appliance in the 
adjustable load of the k-th household in the tth period (kW)

τt 0–1 integer variable controlling the operation of adjustable 
household appliances

tt Start time of the adjustable household appliance operation 
in the tth period

Δtt Working duration after the start of operation of the 
adjustable household appliance in the tth period (hour)

tt,start,0 Earliest start time for the adjustable household appliance 
to operate in he tth period

tt,start,1 Latest start time for the adjustable household appliance to 
operate in he tth period

M Required working duration of the adjustable household 
appliance during a calculation cycle (Hour)

i Benchmark discount rate (%)
W1 Levelized annual costs per household in the rural 

distribution network (CNY)
U Operational lifespan of the DPV cluster and ES project 

(Year)
Z Subsidy period for the ES system (Year)
ζ Target of PV local utilization rate in the rural distribution 

network (%)
W2 PV local consumption rate in the rural distribution network 

(%)
Eload

dem,n,t Load power of the nth village in the tth period (kWh)
αt 0–1 integer variable controlling the charging and 

discharging of the ES system
L0

rigid,t Rigid load at time t under benchmark electricity price (kW)
L0

flex,t Flexible load at time t under benchmark electricity price 
(kW)

pt Hourly electricity price at time t (CNY/kWh)
p0 Benchmark electricity price (CNY/kWh)
Qes

t Stored energy of the ES system in the tth period (kWh)
SOCmax Maximum charge state of the ES system (%)
Qes

t− 1 Stored energy of the ES system in the t-1th period (kWh)
ϖcha Charging efficiency of the ES system (%)
ϖdis Discharging efficiency of the ES system (%)
ϕmin Minimum charge state of the ES system (%)
ϕmax Maximum charge state of the ES system (%)
G The scale of each generation of particles
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systems. Driven by the ‘county-wide DPV promotion’ initiative, rooftop 
PV deployment in rural areas is rapidly expanding [4]. As of September 
2024, the installed capacity of DPV systems in rural China has reached 
150 GW, and the cumulative number of installed households has 
exceeded 6 million, contributing an average annual income of 11 billion 
CNY to farmers [5].

The inherent intermittency and volatility characteristics of PV power 
generation pose significant challenges to modern power systems [6–7]. 
The rapid expansion of DPV capacity is progressively saturating the 
integration potential of 110 kV and sub-110 kV distribution networks, 
leading to widespread PV curtailment in regions with insufficient grid 
hosting capacity [8]. Concurrently, the increasing penetration of DPV 
systems has exacerbated grid stability challenges, including transformer 
reverse power flow overloads and voltage violations, posing significant 
threats to distribution network security [9–10]. The adoption of on-site 
consumption and ES technologies has emerged as a critical solution, 
enabling the direct utilization or storage of energy at or near the gen-
eration site. This approach reduces reliance on long-distance trans-
mission networks while enhancing PV self-consumption and self- 
sufficiency [11–13].

The academic community is actively seeking solutions to enhance PV 
self-consumption and building self-sufficiency [14–18]. Jiang et al. [19] 
developed a time-of-use (TOU) optimization model based on park users’ 
power consumption patterns, leveraging differentiated tariff packages to 
guide load transfer and improve PV self-use. Shao et al. [20] aimed to 
minimize microgrid power deviations by dynamically optimizing TOU 
tariffs, thereby enhancing renewable energy self-consumption. Howev-
er, TOU price optimization is limited to adjustable loads. An alternative 
approach involves ES systems, which store surplus PV electricity for 
later use, significantly boosting building self-sufficiency. It should be 
noted here that PV self-consumption refers to the share of generated 
power used directly or for storage charging, while self-sufficiency de-
notes the proportion of total load met by renewable energy or storage 
discharge. Argyrou et al. [21] introduced a dynamic local PMA algo-
rithm for battery-supercapacitor hybrid storage, markedly improving PV 
self-consumption. Ahmadiahangar et al. [22] designed a multi-objective 
scheduling method incorporating battery storage to minimize grid 
purchases and enhance self-sufficiency. Mulleriyawage et.al [23] pro-
posed a demand-side management strategy integrating DPV, residential 
loads, and storage to reduce power costs and increase self-consumption. 
Abdalla et al. [24] explored an energy management strategy combining 
electric vehicles, ES, household loads, and PV to further optimize grid 
reliance and self-sufficiency. Current research predominantly focuses on 
urban industrial, commercial, and residential areas. However, rural 
distribution networks differ significantly from urban ones. They have 
lower carrying capacity and lower residential electricity loads than in-
dustrial and commercial areas [25–26]. These factors exacerbate the 
spatial and temporal mismatch between DPV generation and load de-
mand in rural areas, making local PV consumption more challenging. 
Thus, the scientific deployment of ES systems in rural areas is crucial for 
enhancing PV self-consumption and self-sufficiency.

Addressing the challenge of ES configuration self-consumption of 
DPV in rural areas, Wang et al. [27] proposes an optimized allocation 

method based on an improved particle swarm optimization algorithm. 
Research indicates that ES can reduce the PV curtailment rate by 37.51 
% in off-grid mode and increase local absorption by 29.09 % in grid- 
connected mode. Wang et al. [28] validated the benefits of ES in 
enhancing PV consumption through an orderly charging scheduling 
model and an ES configuration model for electric vehicles. Wang et al. 
[29] developed a dual-objective capacity planning model aimed at 
minimizing PV grid-connected power and maximizing system benefits, 
demonstrating that ES configuration can reduce PV grid-connected 
power by 38.65 %. However, rural distribution networks in China 
exhibit extensive geographic dispersion and numerous DPV points. 
Existing studies largely focus on single-village PV clusters, overlooking 
inter-village power complementarity, which leads to underutilization of 
ES and suboptimal investment returns. In contrast, a cross-village SES 
offers a more cost-effective and technically viable solution by optimizing 
resource allocation and enhancing power complementarity.

As an innovative approach, SES planning and operation have 
garnered significant academic interest. Regarding modeling methods, Li 
et al. [30] developed a master-slave game-based model integrating SES 
and PV communities, achieving a 17.16 % reduction in power costs 
through bi-level optimization. Kang et al. [31] proposed a reinforcement 
learning-based framework for planning community battery ES, demon-
strating a 38 % increase in economic profits. Addressing the community 
ES sharing mechanism, Li et al. [32] formulated a robust optimization 
model minimizing annual operating costs, yielding a 6.09 % cost 
reduction. Chang et al. [33] employed mixed-integer linear program-
ming to validate the cost advantages of SES in community settings. For 
renewable energy integration, the two-tier model by Ma et al. [34] 
confirmed that SES significantly reduces wind and solar curtailment, 
generating $154 million in benefits. Yang et al. [35]. showed that SES 
effectively reduces deviation costs for renewable energy producers and 
improves grid-connection efficiency. In industrial park applications, the 
model proposed by Cao et al. [36], based on a reputation factor pricing 
strategy, proves effective in reducing carbon emissions and lowering 
costs for industrial users. Despite substantial advancements in SES 
modeling and optimization, most studies prioritize cost or profit opti-
mization for system operators or investors, with limited focus on the 
objective renewable energy self-consumption.

Based on the above issues, this study examines the disparities in the 
installed capacity of DPV across villages and the varying electricity de-
mands of rural residents within the rural distribution network. It pro-
poses a cooperative operation strategy for multi-DPV clusters and SES, 
focusing on PV self-consumption and self-sufficiency. A two-stage opti-
mization model for SES configuration is developed, considering the dual 
objectives of rural residents’ levelized annual cost and PV self- 
consumption. Multiple scenarios are analyzed, considering different 
ES configurations and the introduction of DR. The comparison evaluates 
the impact on PV self-consumption and self-sufficiency levels, as well as 
the cost-benefit status of rural residents under various scenarios. Results 
demonstrate the positive effects of SES and DR collaboration in 
enhancing PV self-consumption and reducing costs for rural residents, 
offering valuable insights for the optimal operation of multi-DPV clus-
ters in rural distribution networks. The main contributions of this paper 

wd
g Inertia weight of particle q after the dth iteration

wmin Predefined minimum inertia coefficients
wmax Predefined maximum inertia coefficients

f
(

xd
q

)
Fitness value of particle q at the dth iteration

fd
average Average fitness value of particle q at the dth iteration

fd
min Minimum fitness value of particle q at the dth iteration

N Number of villages in rural distribution network
T Number of time periods including t in a year

t Hour
u Year
Ltotal,t Total load at time t (kW)
Δp0 Electricity price variation, Δp0 = pt − p0
etk Price elasticity coefficient of rigid load at time t to price at 

time k
ηtk Price elasticity coefficient of flexible load at time t to price 

at time k
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are as follows: 

(1) Exploiting the complementarity between the output of DPV 
clusters across different rural villages and residential electricity 
demand, a collaborative operation strategy involving multi- 
cluster PV and a SES system is proposed. This approach en-
hances PV self-consumption and self-sufficiency in rural areas.

(2) A two-stage optimization model for SES configuration is devel-
oped. By examining various storage schemes, the model high-
lights the benefits of SES in boosting PV self-consumption, 
reducing grid power dependence, and lowering costs for rural 
residents, thus providing a basis for rational SES planning.

(3) The synergistic interaction between SES and DR further enhances 
PV self-consumption and self-sufficiency, while simultaneously 
reducing the levelized annual cost for rural residents, improving 
energy efficiency, and optimizing economic performance.

The structure of the remaining parts of this paper is as follows: 
Section 2 proposes a cooperative operation strategy for multi-DPV 
clusters and SES. Section 3 presents a comprehensive life-cycle cost-in-
come analysis framework of the multi-DPV clusters and SES system. 
Section 4 establishes a PV power generation and residential electricity 
consumption model, as well as a two-stage SES optimization 

configuration model. Section 5 conducts a case analysis using a DPV 
promotion area within a certain rural distribution network as an 
example. Finally, Section 6 is the conclusion of this paper. The research 
framework of this paper is illustrated in Fig. 1.

2. Collaborative operation strategy of multi-DPV clusters and 
SES system

Given the high penetration of DPV systems in rural distribution 
networks, which threatens their safe and stable operation, this paper 
proposes a cooperative operation strategy integrating multi-DPV clus-
ters and SES system. The strategy enhances the PV self-consumption and 
alleviates grid connection pressure. The key steps are as follows:

Step 1: PV self-generation and self-consumption.
Supply Side: Each village prioritizes self-use of locally generated PV 

power.
Demand Side: Residents first consume PV electricity produced within 

their village.
Step 2: Mutual complementary consumption.
Supply Side: Excess PV power is transferred to neighboring villages 

with insufficient supply.
Demand Side: If local demand exceeds supply, electricity is sourced 

from villages with surplus PV power.

Fig. 1. The research framework of the study.
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Step 3: PV power sharing through SES.
Supply Side: Any remaining surplus is stored in a SES system.
Demand Side: If load demand persists after redistribution, power is 

drawn from SES.
Step 4: Grid-connected consumption.
Supply Side: Residual PV power is fed into the distribution network.
Demand Side: If load demand remains unmet, power is purchased 

from the grid.
Step 5: Demand response.
Rural users participate in DR programs, adjusting consumption pat-

terns based on time-of-use pricing to shift peak loads and enhance sys-
tem efficiency.

The schematic diagram of collaborative operation strategy is shown 
in Fig. 2.

3. Cost-income analysis framework for multi-DPV clusters and 
SES system

3.1. Cost analysis for multi-DPV clusters and SES system

(1) Construction cost of DPV.

The construction cost of DPV comprises equipment investment and 
installation costs. The total construction cost for the nth village DPV 
cluster is expressed as Eq. (1): 

Cpv
con,n =

∑H

h=1

(
Cpv

inv,n,h +Cpv
ins,n,h

)
(1) 

DPV equipment investment is quantified as the product of system 
rated capacity and unit capacity cost, as formulated in Eq. (2). 

Installation costs are typically calculated as a fixed percentage of 
equipment investment, as demonstrated in Eq. (3): 

Cpv
inv,n,h = Cu,invPpv

rat,n,h (2) 

Cpv
ins,n,h = Cpv

inv,n,h × δ1 (3) 

(2) Operation and maintenance cost of DPV.

For sub-10 kW systems, operation and maintenance costs are negli-
gible. Larger-scale PV plants require operation and maintenance budg-
eting at 1–3 % of total investment, as specified in Eq. (4): 

Cpv
mai,n = Cpv

inv,n × δ2 (4) 

(3) Construction cost of SES.

The construction cost of SES includes both equipment investment 
and installation costs, calculated as Eq. (5): 

Ces
con = Ces

inv +Ces
ins (5) 

Equipment investment consists of capacity-related and power- 
related costs, formulated in Eq. (6). Installation costs vary with system 
type and scale, as expressed in Eq. (7): 

Ces
inv = Cu,cap ×Qes

cap +Cu,pow × Ees
pow (6) 

Ces
ins = Ces

u,ins ×Qes
cap (7) 

(4) Operation and maintenance cost of SES.

Fig. 2. Collaborative operation strategy of multi-DPV clusters and SES system in rural areas.
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Operation and maintenance costs encompass routine maintenance, 
emergency services, charge state management, and energy loss 
compensation. These are typically calculated as a percentage of initial 
investment, as shown in Eq. (8): 

Ces
mai = Ces

inv × δ3 (8) 

(5) Replacement cost of SES.

Given the shorter lifespan of storage systems compared to DPV 
projects, battery and equipment replacement costs must be considered, 
calculated as Eq. (9): 

Ces
rep =

∑M

m=1

(
Ces

pur,m ×B+Ces
rem,m ×B

)
(9) 

(6) Grid electricity procurement cost.

When local generation and storage cannot meet village demand, 
supplementary electricity is purchased from the grid, calculated as Eq. 
(10): 

Cgrid
pur,n =

∑T

t=1
Egrid

pur,n,t × pgrid
pur,t (10) 

3.2. Income analysis for multi-DPV clusters and SES system

(1) DPV grid-connected income.

Grid-connected income is calculated as the product of PV grid- 
connected power and feed-in tariff. The income calculation is shown 
in Eq. (11). Under the proposed multi-cluster coordination strategy, 
each village’s grid-connected power equals total PV generation minus 
self-consumption, inter-village complementary, and storage charging, as 
shown in Eq. (12): 

Rpv
grid,n =

∑T

t=1
Epv

on,n,t × ppv
on,t (11) 

Epv
on,n,t = Epv

gen,n,t − Esel,n,t − Epv
com,n,t − Epv

cha,n,t (12) 

(2) DPV subsidy income.

Governments provide either upfront installation or generation-based 
subsidies. Given that over 50 % of Chinese regions implement upfront 
subsidies (based on available statistics), this study adopts the upfront 
subsidy model, calculated as Eq. (13): 

Rpv
sub,n =

∑H

h=1
Ppv

rat,n,h × λpv
inv,sub (13) 

(3) SES subsidy.

Local governments typically provide time-limited subsidies based on 
actual discharged power, calculated as Eq. (14): 

Res
sub =

∑T

t=1
Ees

dis,t × λes
sub,t (14) 

(4) Fixed asset residual value.

At project termination, recoverable materials from decommissioned 
assets are valued as original asset value multiplied by residual rate, 
calculated as Eq. (15): 

Rres =

(
∑N

n=1
Cpv

con,n +Ces
con

)

× γ (15) 

4. Methods

4.1. Prediction model for PV power output

To enhance the accuracy of PV power prediction, this paper proposes 
a GA-CNN-GRU model incorporating an attention mechanism. The 
methodology comprises the following steps: 

(1) Data preprocessing.

Anomalies and missing values in historical PV data are corrected. 
The Pauta criterion (3σ principle) is employed to eliminate outliers, 
while missing data are filled via linear interpolation: 

xi = xi− 1 +
(xi+1 − xi− 1)

2
(16) 

(2) Feature selection.

The Pearson Correlation Coefficient quantifies the relationship be-
tween meteorological factors and PV output: 

ρX,Y =
cov(X,Y)

σXσY
(17) 

where cov(X,Y) denotes covariance, and σx and σy represent the standard 
deviations of variables X and Y, respectively. Features with strong cor-
relations (|ρ|≥ 0.5), such as irradiance and humidity, are selected as 
model inputs. 

(3) Genetic algorithm-based weight optimization.

A Genetic Algorithm (GA) optimizes feature weights ωi by mini-
mizing the prediction error: 

min
∑I

t=1
yt − ŷt (18) 

where yt is the actual output, ŷt is the predicted value, and I is the sample 
size. Weights are iteratively refined through selection, crossover, and 
mutation operations. 

(4) CNN feature extraction.

One-dimensional convolution extracts local temporal features 
through the operation: 

h(l)
k = ReLU

(
∑m

i=1
ω(l)

k × x(l− 1)
i:i+s− 1 + b(l)

k

)

(19) 

where h(l)
k denotes the output of the k-th convolutional kernel at layer l, 

ω(l)
k and b(l)k represent weights and bias respectively, s is the kernel size, 

and ReLU serves as the activation function. 

(5) Attention mechanism.

An attention mechanism dynamically allocates weights to critical 
timesteps [37]. The attention score αt is computed as: 

αt =
exp(et)

∑T

j=1
exp(et)

, et = tanh(Waht + ba) (20) 
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where ht is the GRU hidden state, while Wa and ba are trainable 
parameters. 

(6) GRU temporal prediction.

The GRU captures long-term dependencies via update gate zt and 
reset gate rt [38]: 

zt = σ(Wa • [ht− 1, xt] ), rt = σ(Wr • [ht− 1, xt] )

h̃t = tanh(Wh⋅[rt ⊙ ht− 1, xt ] ), ht = (1 − zt) ⊙ ht− 1 + zt ⊙ h̃t (21) 

The final prediction output is given by: 

ŷt = Woht + bo (22) 

where Wo and bo denote output layer parameters. By combining mete-
orological features with historical output data, the model achieves 
higher prediction accuracy.

4.2. Residential DR model based on TOU pricing

Considering the impact of time-of-use (TOU) price policies on resi-
dential electricity consumption patterns [39], the total load is parti-
tioned into two distinct categories: price-insensitive rigid loads (e.g., 
lighting, refrigerators) and price-sensitive flexible loads (e.g., air con-
ditioners, electric vehicles). Separate elasticity response models are 
established for each category. 

(1) Construction of load elasticity matrices.

For rigid loads, which exhibit minimal price responsiveness, their 
elasticity matrix adopts a diagonal structure, eTT reflecting the self- 
elasticity coefficient, that quantifies the constraint effect of rising elec-
tricity prices on current-period load. 

Erigid =

⎡

⎢
⎢
⎣

e11 0 ⋯ 0
0 e22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ eTT

⎤

⎥
⎥
⎦ (23) 

For flexible loads, capable of time-shifting due to price variations, 

their elasticity matrix is a full-rank matrix, ηtkrepresenting the cross- 
elasticity coefficient, indicating load transfer tendencies from high- 
priced to low-priced periods. 

Eflex =

⎡

⎢
⎢
⎣

η11 η12 ⋯ η1T
η21 η22 ⋯ η2T
⋮ ⋮ ⋱ ⋮

ηT1 ηT2 ⋯ ηTT

⎤

⎥
⎥
⎦ (24) 

The model satisfies the following economic constraints: 

ηtt < 0, ηtk > 0(t ∕= k), ∑T

ηtk ≤ 0 ∀t (25) 

(2) Load response calculation method.

Rigid load is solely influenced by the current time period’s electricity 
price, with its mathematical expression defined as: 

Lrigid,t = L0
rigid,t(1+ ett⋅Δpt/p0) (26) 

The model degenerates into the traditional fixed load model when 
|ett |→0.

Flexible load is subject to cross-effects from electricity prices across 
all time periods, expressed as: 

Lflex,t = L0
flex,t

(

1+
∑T

k=1
ηtk⋅Δpk

/

p0

)

(27) 

The total load of time period t is the sum of rigid load and flexible 
load. 

(3) Constraints.
1) Energy conservation constraint.

The total electricity consumption of flexible loads remains constant 
before and after load shifting (assuming no load shedding), expressed as: 

∑T

t=1
Lflex,t =

∑T

t=1
L0

flex,t (28) 

2) Price constraints

pmin ≤ pt ≤ pmax (29) 

4.3. Two-stage optimization configuration model of SES for DPV clusters

4.3.1. First-stage capacity planning model

(1) Objective function.

The primary objective of the first stage is to minimize the levelized 
annual costs for residential households within the rural distribution 
network, and the power and capacity of the SES are used as the decision 
variables, as formulated in Eq. (30).   

(2) Constraints.

While a larger SES system enhances the PV self-consumption, it also 
increases investment costs. Economically, there exists an optimal mini-
mum SES configuration that satisfies the PV self-consumption of village 
distribution network. The constraints for this stage focus on the local 
utilization level of DPV within the network, as detailed in Eq. (31). 

∑T

t=1

(
∑N

n=1

(
Esel,n,t +Epv

com,n,t

)
+ Ees

cha,t

)

≥ ζ
∑T

t=1

∑N

n=1
Epv

gen,n,t (31) 

4.3.2. Second-stage system operation model

(1) Objective function.

minW1 = 1
/H ×

(
∑N

n=1

(
Cgrid

pur,n − Rpv
grid,n

)
− Res

sub × (1 + i)U− Z
×

(

(1 + i)Z
− 1/

(1 + i)U
− 1

)

+

(

Rres × i/
(1 + i)U

− 1

)

+

(
∑N

n=1

(
Cpv

con,n + Cpv
mai,n − Rpv

sub,n

)
+ Ces

con + Ces
mai + Ces

rep

)

×

(

i × (1 + i)U/
(1 + i)U

− 1

)) (30) 
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Fig. 3. Flowchart of the APSO for SES configuration.
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The second stage aims to maximize the PV self-consumption ratio of 
the distribution network. It optimizes the PV in-situ consumption rate 
over the project’s operational cycle, with the hourly charging and dis-
charging power of the SES system as decision variables, as expressed in 
Eq. (32). 

maxW2=

(
∑U

u=1

∑N

n=1

∑T

t=1

(
Epv

sel,n,t+Epv
com,n,t

)
+
∑U

u=1

∑T

t=1
Ees

cha,t

)/
∑U

u=1

∑N

n=1

∑T

t=1
Epv

gen,n,t

(32) 

(2) Constraints.
1) Power balance is maintained as Eq. (33).

∑N

n=1
Epv

gen,n,t −
∑N

n=1
Epv

on,n,t +
∑N

n=1
Egird

pur,n,t +
∑N

n=1
Ees

dis,n,t

=
∑N

n=1
Esel,n,t +

∑N

n=1
Epv

com,n,t +
∑N

n=1
Epv

cha,n,t +
∑N

n=1
Egrid

pur,n,t (33) 

Table 1 
Basic information of the three villages.

Basic information of the three villages Village 1 Village 2 Village 3

Number of rural households 100 200 300
Investment scale per rural household of DPV 

(kW)
3 5 4

Coverage rate of DPV (%) 40 100 70
Total investment scale of DPV (kW) 120 1000 840

Fig. 4. Topology of the distribution network in Scenario 1.
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Fig. 5. Topology of the distribution network in Scenario 2.
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2) The charging and discharging power of the SES battery are con-
strained by Eqs. (34) to (35).

0 ≤
∑N

n=1
Ees

cha,n,t ≤ Ees
pow (34) 

0 ≤ Ees
dis,n,t ≤ Ees

pow (35) 

3) The battery must avoid simultaneous charging and discharging 
states, as specified in Eqs. (36) to (38).

0 ≤
∑N

n=1
Ees

cha,n,t ≤ αtEes
pow (36) 

0 ≤
∑N

n=1
Ees

dis,n,t ≤ (1 − αt)Ees
pow (37) 

Fig. 6. Topology of the distribution network in Scenarios 3 or 4.
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Fig. 7. The training set and validation set for the PV prediction model.
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αt =

⎧
⎪⎨

⎪⎩

1
0

∑N

n=1
Epv

gen,n,t >
∑N

n=1
Eload

dem,n,t and Qes
t ≤ Qes

cap ⋅SOCmax

else

(38) 

4) The remaining power in the SES at any moment must relate to the 
previous moment’s remaining power, constrained by Eq. (39).

Qes
t =Qes

t− 1 +
∑N

n=1
Ees

cha,n,t ×Δt×ϖcha or Qes
t =Qes

t− 1−
∑N

n=1
Ees

dis,n,t ×Δt
/

ϖdis

(39) 

5) To prevent energy loss, the shared storage must adhere to upper and 
lower limits on the charging state [40], as outlined in Eq. (40).

Qes
cap⋅ϕmin ≤ Qes

t ≤ Qes
cap⋅ϕmax (40) 

6) Frequent charging and discharging can reduce the battery’s lifespan. 
Therefore, a constraint on the number of charge/discharge cycles is 

necessary [41]. For simplicity, Eq. (41) approximates one charge/ 
discharge cycle per day, excluding capacity decay considerations.

∑24

t=1

∑N

n=1
Ees

dis,n,t

/

ϖdis
≤ Qes

cap⋅ϕmax (41) 

4.4. Model solution method

The optimal configuration of ES capacity involves multiple con-
straints that are difficult to solve using traditional mathematical 
methods. The Particle Swarm Optimization (PSO) algorithm obtains 
optimal solutions by simulating interactions and evolution among in-
dividuals in a population, making it suitable for multidimensional 
optimization problems. However, it also has limitations, such as sus-
ceptibility to local optima and sensitivity to parameter selection. 
Empirical studies show that a larger inertia weight enhances global 
convergence, while a smaller one improves local convergence. Thus, the 
choice of inertia weight critically affects PSO performance. To balance 
global and local search, the inertia weight can be set as a function of 
iteration count, enabling stronger global exploration in early stages for 
faster search and enhanced local exploitation in later stages for higher 
convergence precision.

An improved adaptive inertia weight particle swarm optimization 
algorithm (APSO) is employed to solve the two-stage optimal allocation 
model for village-domain DPV cluster and SES [42]. The inertia weights 
are updated using the specified eq. (42). 

wd
g =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wmin+(wmax − wmin)×

⎛

⎝f
(

xd
g

)
− fd

min

/

fd
average − fd

min

⎞

⎠ f
(

xd
g

)
≤fd

average

wmax f
(

xd
g

)
>fd

average

(42) 

The average fitness of all particles at the dth iteration is expressed by 
the eq. (43): 

Fig. 8. North China climatic data (Year 21–25): Temp., Radiation & RH.

Table 2 
Design parameters of the PV prediction model.

Model parameters Values

Population size of the genetic algorithm 20
Number of iterations 2000
Mutation probability 0.1
Kernel size of the CNN layer 3
Number of output channels in the CNN layer 16
Hidden size of the GRU layer 4
Number of GRU layers 1
Hidden size of the attention mechanism 4
Learning rate 0.01
Total number of training epochs 5000
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fd
average =

∑G

g=1
f
(

xd
g

)/

G (43) 

The minimum fitness among all particles at the dth iteration is 
defined by the eq. (44): 

fd
min = min

{
f
(
xd

1
)
, f
(
xd

2
)
,⋯, f

(
xd

g

)}
(44) 

The schematic representation of the algorithm is illustrated in Fig. 3.

5. Case study

5.1. Construction of typical scenarios and design of basic data

5.1.1. Construction of typical scenarios
To analyze the impacts of residual power complementarity, SES 

configuration, and DR implementation on the PV self-consumption and 
power self-sufficiency, and the levelized annual cost per rural house-
hold, four distinct scenarios are designed as follows: 

• Scenario 1: No ES configuration. DPV systems in each village 
operate independently without ES, and no DR is implemented.

• Scenario 2: DES configuration. DPV clusters within the rural dis-
tribution network adopt a self-generation and self-consumption 
model with surplus power connected into the grid. Each village 
independently invests in ES, and no DR is implemented.

• Scenario 3: Residual power complementarity and SES configuration. 
DPV clusters within the rural distribution network operate under a 
self-generation and self-consumption model with residual power 
complementarity. All villages jointly invest in a SES system, and no 
DR is implemented.

• Scenario 4: Residual power complementarity, SES configuration, 
and DR implementation. DPV clusters within the rural distribution 
network operate under a self-generation and self-consumption model 
with residual power complementarity. All villages jointly invest in a 
SES system, and DR is implemented.

Fig. 9. Load power of typical households on typical days in different villages.

Fig. 10. The peak and valley levels of the power grid with correspond-
ing tariffs.

Table 3 
The average proportions of flexible load in the three villages during peak, flat, and valley periods.

Season Village 1 Village 2 Village 3

Peak Flat Valley Peak Flat Valley Peak Flat Valley

Spring and Autumn 10.90 % 0.00 % 0.00 % 19.17 % 6.30 % 0.00 % 14.04 % 2.76 % 0.00 %
Summer 22.15 % 3.89 % 0.00 % 29.29 % 10.52 % 0.00 % 25.39 % 6.45 % 0.00 %
Winter 21.51 % 2.31 % 0.00 % 25.01 % 10.87 % 0.00 % 24.06 % 6.28 % 0.00 %
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5.1.2. Design of basic data

(1) The status of rural distribution networks.

This paper focuses on a DPV promotion area within a rural distri-
bution network in North China. The village distribution network covers 
three neighboring villages, all within the power supply range of the 
same township-level grid, with a linear distance of less than 5 km. This 
aligns with China’s typical rural power supply structure of “transformer 
district-village group.” The study’s grouping method follows the stan-
dard rural distribution network framework, with the natural village as 
the smallest unit. The grid encompasses three villages, each differing in 
population size, economic status, and DPV investment levels: 

• Village 1: Economically disadvantaged village with only basic 
electrical equipment, resulting in low overall electricity 
consumption.

• Village 2: Affluent village with a diverse range of electrical equip-
ment, often operating simultaneously, leading to high overall elec-
tricity consumption.

• Village 3: Generally affluent village with high-power electrical de-
vices, but shorter operating durations for equipment, resulting in 
moderate overall electricity consumption.

The number of rural households, residential power consumption, and 
DPV investment for the three villages are summarized in the Table.1:

This paper adopts a radial topology for the rural distribution 
network, where three villages are connected to a shared transformer via 
a 10 kV trunk line, with each village receiving 380 V low-voltage supply. 
The network topologies for Scenarios 1 to 4 are illustrated Fig. 4–6. 

Fig. 11. The variation of the loss function during training.

Fig. 12. Temporal variations of actual output, predicted output, and prediction errors in the validation set for village 1 during summer period.
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(Scenarios 3 and 4 share the same topology). 

(2) DPV clusters output.

Considering the influence of three key factors, namely temperature, 
solar radiation and relative humidity, on PV output in North China, the 
GA-CNN-GRU attention-based prediction model introduced in Section 
4.1 is applied for multi-scale forecasting. Historical data covering PV 
output, temperature, solar radiation and relative humidity from Villages 
1 to 3 during the first 20 years of the planning period are utilized. Data 
from years 1 to 16 are used as the training set, while data from years 17 
to 20 serve as the validation set. The training set and validation set for 
the PV prediction model are shown in Fig. 7.

Once the model achieves satisfactory performance, training is 
terminated, and the optimized model is used to forecast PV output for 
years 20–25. The corresponding environmental data (temperature, solar 
radiation, and relative humidity) for North China during this period are 
shown in Fig. 8.

The PV prediction model parameters are configured as shown in the 
Table 2: 

(3) Rural loads.

Based on statistical yearbook data (2010–2024) from a rural area in 
North China [43], the average annual growth rate of residential elec-
tricity load is 3.06 %. Following the 20-year planning standard in Guide 
for choice power transformers (GB/T 17468–2019) and accounting for 
rural electrification trends [44], a segmented load growth model is 
adopted: the first 20 years maintain a 3.06 % annual increase, followed 
by a 5-year saturation period (0 % growth). Fig. 9 illustrates the load 
power variations across typical days of different seasons for three vil-
lages during the planning period. 

(4) Residential electricity pricing.

The TOU periods and corresponding tariffs for the power grid are 
shown in the figure below. The flat-rate price is adopted as the bench-
mark electricity price. The self-elasticity of rigid load is denoted as ett =

− 0.02, and the elasticity matrix of flexible load is given by Eflex =
⎡

⎣
− 0.4 0.2 0.1
0.1 − 0.3 0.1
0.05 0.1 − 0.2

⎤

⎦.

The peak and valley levels of the power grid with corresponding 
tariffs are depicted in Fig. 10.

The average proportions of flexible load in the three villages during 
peak, flat, and valley periods are presented in the Table 3. 

(5) Equipment economics and technical parameters.

Table 4 
Deviation between actual and predicted PV output in summer for Village 1.

Time PV power prediction deviation (kW)

Year 17 Year 18 Year 19 Year 20

1:00/2:00/3:00/4:00 0.00 0.00 0.00 0.00
5:00 0.01 4.58 1.80 0.00
6:00 0.10 2.38 0.91 1.34
7:00 4.09 0.11 0.88 2.10
8:00 2.30 3.15 3.03 4.47
9:00 2.89 5.90 6.13 0.78
10:00 1.40 1.77 2.94 2.43
11:00 2.29 2.27 3.17 1.17
12:00 1.70 1.43 3.80 0.38
13:00 0.88 1.79 3.26 0.34
14:00 0.71 0.97 2.08 1.86
15:00 3.93 1.16 0.84 3.88
16:00 2.26 2.46 0.71 2.62
17:00 1.30 0.89 1.04 3.56
18:00 0.29 1.03 1.36 5.99
19:00 0.19 0.29 0.45 0.02

20:00/21:00/22:00/23:00/24:00 0.00 0.00 0.00 0.00
Average actual PV power (kW) 28.30

Average PV prediction deviation (kW) 1.28
PV prediction accuracy (%) 95.52

Fig. 13. PV output forecasting for Years 21–25 of the planning period across Villages 1–3.
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The economic parameters for DPV systems include: a unit capacity 
investment of 3.04 CNY/W, installation cost of 0.45 CNY/W, and feed-in 
tariff of 0.292 CNY/kWh. The PV system has a 25-year service life with 
annual operation and maintenance costs equivalent to 1 % of the initial 
investment. The residual value of fixed assets is calculated at 5 % of the 
initial investment, with an initial installation subsidy of 0.2 CNY/W.

For SES systems, the lifecycle is 10 years with unit capacity costs of 
800 CNY/kWh and unit power costs of 300 CNY/kW. The installation 
costs are incorporated into the initial investment, with annual operation 
and maintenance expenses at 3 % of the initial investment. The system 
operates within a state of charge range of 0.20–0.95, with 90 % 
charging/discharging efficiency [45]. A government subsidy of 0.3 
CNY/kWh is provided based on actual discharge amounts for five 
consecutive years, with an asset discount rate of 7 %.

In villages with sufficient DPV generation, electricity is transmitted 
via low-voltage distribution networks to areas with PV deficits, or from 

distributed PV systems to SES (charging), and from shared storage to 
villages. This transmission incurs line losses. According to the State Grid 
Corporation Line Loss Management Standards, the line loss rate for grids 
below 110 kV should not exceed 7 %. In this study, the grid line loss rate 
is set at 5 %.

5.2. Results analysis of PV prediction and DR

5.2.1. The results of PV prediction
A GA-CNN-GRU PV prediction model incorporating an attention 

mechanism is employed to perform multi-time-scale forecasting based 
on historical data and model parameters from the first 20 years of the 
planning period, as specified in Section 5.1.2. Specifically, data from 
years 1–16 serve as the training set, while data from years 17–20 are 
used for validation. The model was trained for 5000 epochs using the 
AdamW optimizer in Python. The variation of the loss function during 

Fig. 14. Seasonal typical daily load curves of rural households after TOU price-based DR implementation.

Table 5 
The calculation results of the evaluation indicators for the implementation effect of TOU price-based DR.

Village Evaluation indicators Before implementing TOU price-based DR After implementing TOU price-based DR

Spring and autumn Summer Winter Spring and autumn Summer Winter

Village 1

Average maximum Load (kW) 71.71 91.22 91.85 68.53 85.01 86.20
Average minimum Load (kW) 30.60 30.60 31.00 37.96 30.82 31.00

Average peak-valley load difference (kW) 41.11 60.62 60.85 30.57 54.19 55.19
Average peak-valley difference ratio (%) 57.33 66.46 66.24 44.61 63.74 64.03

Village 2

Average maximum Load (kW) 377.37 649.90 536.41 358.79 609.71 503.36
Average minimum Load (kW) 83.38 106.15 105.69 85.64 104.65 107.09

Average peak-valley load difference (kW) 293.99 543.75 430.72 273.15 505.06 396.26
Average peak-valley difference ratio (%) 77.9 83.67 80.30 76.13 82.84 78.72

Village 3

Average maximum Load (kW) 368.83 551.50 501.47 353.24 516.49 473.09
Average minimum Load (kW) 109.31 110.53 110.22 110.82 116.35 114.31

Average peak-valley load difference (kW) 259.52 440.97 391.25 242.42 400.14 358.77
Average peak-valley difference ratio (%) 70.36 79.96 78.02 68.63 77.47 75.84

All villages

Average maximum Load (kW) 447.30 654.82 595.21 435.98 640.74 580.41
Average minimum Load (kW) 189.00 213.85 204.28 201.03 240.60 223.64

Average peak-valley load difference (kW) 258.30 440.97 390.94 234.95 400.14 356.77
Average peak-valley difference ratio (%) 57.75 67.34 65.68 53.89 62.45 61.46
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training is illustrated in Fig. 11.
The loss function quantifies the mean squared error between the 

model’s predicted output and actual measurements. Its convergence 
behavior reflects the model’s training dynamics and learning efficiency. 
As shown in Fig. 11, the loss converges to approximately 0.00 after 2000 
training epochs and remains stable, indicating strong fitting capability 

and accurate capture of the nonlinear characteristics of PV output.
Using summer data from Village 1 as an example, prediction devia-

tion and model accuracy are assessed by comparing predicted values 
with actual data from years 17–20, as illustrated in Fig. 12.

The specific numerical values of PV prediction errors in the valida-
tion set for Village 1 during summer are presented in the Table 4.

As evidenced by the results in Table 4, the proposed GA-CNN-GRU 
model with enhanced attention mechanism demonstrates superior 
forecasting performance. Taking the summer PV output prediction of 
Village 1 as an example, the model achieves 95.52 % prediction accu-
racy on the validation set, confirming its exceptional capability in 
capturing critical meteorological features. Building upon this validation, 
the model application is extended to PV output forecasting for Years 
21–25 of the planning period. Fig. 13 presents the prediction results 
across Villages 1–3.

This paper utilizes the time-series PV output data from three village 
clusters during the 25-year planning period as key input parameters for 
the ES optimization configuration model, establishing the data founda-
tion for subsequent ES system optimization research in Sections 5.3 and 
5.4.

5.2.2. The results of TOU price-based DR implementation
The seasonal typical daily load curves of rural households after TOU 

price-based DR implementation are shown in Fig. 14:
The calculation results of the evaluation indicators for the imple-

mentation effect of TOU price-based DR are shown in the Table 5.
Table 5 demonstrates that the TOU-based DR mechanism signifi-

cantly optimizes rural load profiles. Taking the aggregated load of all 

Fig. 15. Fitness curve of the PSO algorithm.

Fig. 16. Fitness curve of the APSO algorithm.

Fig. 17. Adaptability curve in Scenario 2.

Fig. 18. Adaptability curve in Scenario 4.
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villages in the distribution network as an example, during spring/ 
autumn, summer, and winter typical days, the peak average load 
decreased by 2.53 %, 2.15 %, and 2.49 %, respectively, while the valley 
average load increased by 6.37 %, 12.51 %, and 9.48 %. Consequently, 
the peak-valley difference rate dropped by 3.86 %, 4.89 %, and 4.22 %. 
This optimization mitigates grid peak-shaving pressures. Notably, rural 
users actively shifted consumption from high-price peak periods to low- 
price valleys in response to pricing signals, reducing grid operational 
costs and lowering electricity expenses, thereby achieving a win-win 
outcome for both grid operators and rural households.

5.3. Optimization process of ES configuration under different scenarios

5.3.1. Comparison of solution methods
This study employs standard PSO and an APSO to solve the ES 

optimization problem. Multiple experiments were conducted with 
varying initial populations and iteration counts to observe algorithmic 
convergence under different parameter settings. Using Scenario 3 as a 
benchmark case, Fig. 15 and Fig. 16 compare the convergence perfor-
mance of both methods under identical computational conditions. The 
modified PSO demonstrates superior convergence stability and speed 
compared to the standard PSO. Results indicate that the adaptive inertia 
weight adjustment enables more efficient escape from local optima and 
accelerates global optimization. Thus, the APSO algorithm proves more 
effective for solving the ES configuration model proposed in Section 4.3.

5.3.2. ES configuration optimization across scenarios
An improved particle swarm optimization (PSO) algorithm with 

adaptive inertia weight was implemented to optimize ES configurations 
across different scenarios. The algorithm parameters were configured as 
follows: swarm size of 100 particles with cognitive and social factors 
both set to 0.5, initial inertia weight of 0.8, and iteration limits of 100 or 
150 for Scenario 2 and 200 for Scenarios 3–4. As detailed in Section 
5.2.1, the optimization process for Scenario 3 demonstrated conver-
gence characteristics, while the corresponding fitness convergence 

curves for Scenarios 2 and 4 are presented in Fig. 17 and 18, 
respectively.

5.4. Comparative analysis of ES configuration and system operation 
results under different scenarios

5.4.1. ES configuration results
Table 6. presents the ES configurations for three villages under 

different scenarios.
In scenario 2, each village is equipped with a DES system, resulting in 

a total capacity of 6344 kWh and power of 1167 kW. The initial in-
vestment reaches 5,425,177 CNY, with a levelized annual cost of 3288 
CNY per rural household.

In Scenario 3, three villages are equipped with a SES system with a 
capacity of 6147 kWh and a power of 1045 kW, reducing the initial 
investment to 5,231,479 CNY and levelized annual cost to 3205 CNY. 
This configuration demonstrates a 3.57 % reduction in initial investment 
and 2.54 % decrease in levelized annual cost compared to Scenario 2.

Scenario 4, incorporating TOU price-based DR, further optimizes the 
SES configuration to 5855 kWh capacity and 1027 kW power. The initial 
investment decreases to 4,991,814 CNY (a 7.99 % reduction from Sce-
nario 2), and the levelized annual cost decreases to 3166 CNY (3.72 % 
lower than Scenario 2). The implementation of shared SES for multi-DPV 
clusters in rural distribution networks demonstrates superior cost- 
effectiveness compared to DES configurations. Furthermore, the eco-
nomic viability of the shared storage solution is significantly enhanced 
through the integration of TOU price-based DR mechanisms.

5.4.2. Comparative analysis of ES operation
In long-term operation of DPV systems, interannual variations in PV 

output and load power are predominantly seasonal. Within the same 
climatic region, meteorological differences across years mainly cause 
short-term fluctuations, while maintaining highly stable long-term sta-
tistical characteristics. Accordingly, this study analyzes typical seasonal- 
day data (Mid-period: the 12-th year) representing near-average PV 

Table 6 
ES configuration results in different scenarios.

Optimization results Scenario 2 Scenario 3 Scenario 4

Village 
1

Village 2 Village 3 All villages All villages All villages

ES capacity (kWh) 140 4189 2015 6344 6147 5855
ES power (kW) 24 751 392 1167 1045 1027
Initial investment of ES (CNY) 5,425,177 5,231,749 4,991,814
The ES investment costs saved in Scenario 3 and 4 (CNY) / 193,428 433,363
The savings proportion of ES investment costs in scenarios 3 and 4 (%) / 3.57 7.99

Fig. 19. Operation performance of DES systems in Scenario 2.
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output and load power conditions.
Fig. 19 illustrates the SOC variation and charge-discharge power 

trends of DES systems in three villages.
In Scenario 2, the limitations of DES become evident. For example, 

during spring and autumn, Village 1 begins discharging at 17:00 due to 
insufficient PV output, earlier than other villages, while Village 2 dis-
charges continuously from 18:00 until 6:00 the next day. This lack of 

coordination in charging and discharging timing leads to significant 
disparities in PV utilization. Additionally, compared to SES (Scenarios 3 
and 4), DES exhibits more concentrated charge discharge periods, 
resulting in lower system capacity utilization. The SOC also shows 
higher instability and greater fluctuations.

Fig. 20 presents the operational performance of SES in Scenarios 3 
and 4.

Fig. 20. Operation performance of SES in Scenario 3 and 4.
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Fig. 21. The situation of PV-self consumption and self-sufficiency in different villages in Scenario 1.

Fig. 22. The situation of PV-self consumption and self-sufficiency in different villages in Scenario 2.
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Fig. 23. The situation of PV-self consumption and self-sufficiency in different villages in Scenario 3.

Fig. 24. The situation of PV-self consumption and self-sufficiency in different villages in Scenario 4.
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Scenario 3 demonstrates enhanced system efficiency through 
different villages power complementarity and storage sharing. Specif-
ically, the SES optimally utilizes surplus PV generation during peak 
production hours to charge the SES, while strategically discharging 
during peak consumption periods to meet load demand requirements. 
Comparative analysis reveals that the SES exhibits delayed and more 
distributed discharge patterns relative to Scenario 2. For instance, dur-
ing spring/autumn typical days, the DES systems in Village 1 (Scenario 
2) initiate discharge at 17:00, reaching the lower discharge limit by 
22:00. In contrast, the SES (Scenario 3) maintains continuous discharge 
from 18:00 until 05:00 the following day, demonstrating significantly 
enhanced capacity utilization. Furthermore, the SOC profile in Scenario 
3 shows improved stability and better alignment with the load demand 

Table 7 
The results of PV self-consumption and self-sufficiency in different villages in 
Scenario 1.

Indicators Mid-period: the 12-th year Full life 
cycle

Village 
1

Village 2 Village 3 All villages

PV power (kW) 197,389 1,644,912 1,381,726 76,724,750
PV power directly 

consumed by residential 
loads (kW)

124,644 493,319 535,275 28,509,820

Proportion of self- 
generation and self- 
consumption (%)

63.15 29.99 38.74 37.16

Proportion of PV self- 
consumption (%) 63.15 29.99 38.74 37.16

Load power (kW) 362,067 1,420,104 1,513,438 82,955,389
Power purchased from the 

power grid (kW)
237,422 926,785 978,163 54,445,569

Proportion of purchasing 
power from the power 
grid (%)

65.57 65.26 64.63 65.63

Proportion of power self- 
sufficiency (%) 34.43 34.74 35.37 34.37

Table 8 
The results of PV-self consumption and self-sufficiency in different villages in 
Scenario 2.

Indicators Mid-period: the 12-th year Full life 
cycle

Village 
1

Village 2 Village 3 All villages

PV power (kW) 197,389 1,644,912 1,381,726 76,724,750
PV power directly 

consumed by residential 
loads (kW)

124,644 493,319 535,275 28,509,820

PV power indirectly 
consumed by DES (kW) 36,512 817,300 547,106 34,074,088

Proportion of self- 
generation and self- 
consumption (%)

63.15 29.99 38.74 37.16

Proportion of DES 
consumption (%) 18.50 49.69 39.60 44.41

Proportion of PV self- 
consumption (%)

81.65 79.68 78.34 81.57

Load power (kW) 362,067 1,420,104 1,513,438 82,955,389
Power purchased from the 

power grid (kW) 197,312 109,484 431,057 20,371,481

Proportion of purchasing 
power from the power 
grid (%)

54.50 7.71 28.48 24.56

Proportion of power self- 
sufficiency (%) 45.50 92.29 71.52 75.44

Table 9 
The results of PV-self consumption and self-sufficiency in different villages in 
Scenario 3.

Indicators Mid-period: the 12-th year Full life 
cycle

Village 
1

Village 2 Village 3 All villages

PV power (kW) 197,389 1,644,912 1,381,726 76,724,750
PV power directly 

consumed by residential 
loads (kW)

124,644 493,319 535,275 28,509,820

PV power indirectly 
consumed by SES (kW)

42,672 902,320 600,723 35,351,462

Surplus PV power 
consumed by 
complementarity (kW)

0 8926 0 595,181

Proportion of self- 
generation and self- 
consumption (%)

63.15 29.99 38.74 37.16

Proportion of SES 
consumption (%) 21.62 54.86 43.48 46.08

Proportion of surplus PV 
power consumed by 
complementarity (%) 0.00 0.54 0.00 0.78

Proportion of PV self- 
consumption (%)

84.77 85.39 82.22 84.01

Load power (kW) 362,067 1,420,104 1,513,438 82,955,389
Power purchased from the 

power grid (kW) 61,470 289,539 282,460 18,498,926

Proportion of purchasing 
power from the power 
grid (%)

16.98 20.39 18.66 22.30

Proportion of power self- 
sufficiency (%)

83.02 79.61 81.34 77.70

Table 10 
The results of PV-self consumption and self-sufficiency on typical days in 
different villages in Scenario 4.

Indicators Mid-period: the 12-th year Full life 
cycle

Village 
1

Village 2 Village 3 All villages

PV power (kW) 197,389 1,644,912 1,381,726 76,724,750
PV power directly 

consumed by residential 
loads (kW)

123,808 489,341 541,754 28,476,748

PV power indirectly 
consumed by SES (kW)

42,864 863,563 617,586 25,320,832

Surplus PV power 
consumed by 
complementarity (kW)

0 8949 0 267,112

Proportion of self- 
generation and self- 
consumption (%)

62.72 29.75 39.21 37.12

Proportion of SES 
consumption (%) 21.72 52.50 44.70 33.00

Proportion of surplus PV 
power consumed by 
complementarity (%) 0.00 0.54 0.00 0.35

Proportion of PV self- 
consumption (%)

84.44 82.79 83.91 85.03

Load power (kW) 362,067 1,420,104 1,513,438 82,955,389
Power purchased from the 

power grid (kW)
61,178 280,636 262,203 17,716,334

Proportion of purchasing 
power from the power 
grid (%)

16.90 19.76 17.33 21.36

Proportion of power self- 
sufficiency (%)

83.10 80.24 82.67 78.64
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compared to Scenario 2.
In Scenario 4, the implementation of TOU price-based DR mecha-

nisms enables rural residents to adjust their electricity consumption 
patterns in response to price signals, effectively reducing peak load 
demand while increasing off-peak consumption. This load-shifting 
strategy significantly alleviates operational pressure on the ES system, 

resulting in smoother charge-discharge cycles.

5.4.3. Comparative analysis of PV self-consumption and self-sufficiency
The PV self-consumption and self-sufficiency for each village under 

different scenarios are shown in Fig. 21 to 24, and the results are shown 
in Tables 7–10.

Scenario 1: The annual PV self-consumption ratios for the three 
village areas are 63.15 %, 29.99 %, and 38.74 %, respectively, with an 
overall ratio of 37.16 % within the rural distribution network. This 
limited PV self-consumption necessitates grid integration for over half of 
the DPV power, leading to technical challenges such as grid current 
back-feeding, voltage overruns, harmonic pollution, and protection de-
vice failures, thereby compromising power quality. Additionally, ac-
commodating extensive DPV integration requires costly upgrades to the 
rural distribution grid, increasing investment pressure. The power self- 
sufficiency proportions for the three villages are 34.43 %, 37.74 %, 
and 35.37 %, respectively, with an overall proportion of 34.37 %. This 
reliance on traditional thermal power generation exacerbates carbon 
emissions and environmental pollution.

Scenario 2: Following the configuration of DES systems in each of 
the three villages, the PV self-consumption ratios significantly improved 
to 81.64 %, 79.68 %, and 78.34 %, respectively, with the overall PV self- 
consumption ratio rising to 81.57 %. Concurrently, the proportion of 
power self-sufficiency markedly increased to 45.50 %, 92.29 %, and 
71.52 % for Village 1 to Village 3, respectively, resulting in an overall 
promotion to 75.44 %. This demonstrates the substantial efficacy of ES 
systems in PV self-consumption and self-sufficiency. By significantly 
boosting the PV self-consumption and reducing reliance on the power 
grid electricity, the ES systems play a pivotal role in improving energy 
utilization efficiency and mitigating environmental pollution.

Scenario 3: The adoption of SES further augments PV self- 
consumption and self-sufficiency. The PV self-consumption ratios for 
the villages are 84.76 %, 85.39 %, and 82.22 %, respectively, with an 
overall ratio of 84.01 % within the rural distribution network. The 
power self-sufficiency proportion increases to 77.70 %, representing a 
2.44 % increase in PV self-consumption and a 2.26 % increase in self- 
sufficiency compared to Scenario 2.

Scenario 4: Integrating TOU price-based DR with SES yields further 
improvements. The PV self-consumption ratios for the villages rise to 
84.44 %, 82.79 %, and 83.91 %, respectively, with an overall ratio of 
85.03 %. The power self-sufficiency proportions increase to 78.67 %, 
reflecting a 3.46 % increase in PV local consumption and a 3.20 % 

Table 11 
The cost-income status for rural residents in different scenarios.

Indicators Scenario 
1

Scenario 
2

Scenario 
3

Scenario 
4

Cost

Initial 
investment of 
DPV (CNY)

6,840,400 6,840,400 6,840,400 6,840,400

Average annual 
operation and 
maintenance 
costs of DPV 
(CNY/Year)

68,404 68,404 68,404 68,404

Initial 
investment of ES 
(CNY)

/ 5,425,177 5,231,750 4,991,810

Average annual 
operation and 
maintenance 
costs of ES 
(CNY/Year)

/ 162,755 156,953 149,754

Replacement 
cost of ES (CNY) / 8,137,766 7,847,625 7,487,715

Average annual 
purchasing 
power from the 
grid (CNY/Year)

1,398,561 396,345 335,689 296,080

Income

Average annual 
grid-connected 
income of DPV 
(CNY/Year)

522,650 153,287 132,988 124,505

Initial subsidy 
income of DPV 
(CNY)

392,000 392,000 392,000 392,000

Total subsidy 
income of ES 
discharge (CNY)

/ 1,970,629 2,036,041 2,100,957

Residual value 
of fixed asset 
(CNY)

63,017 187,965 183,510 177,984

Levelized annual cost per 
household (CNY/Year)

2517 3288 3205 3166

Fig. 25. The changing trends of key indicators in different scenarios.
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increase in self-sufficiency compared to Scenario 2.
Comparative analysis across scenarios reveals that ES systems 

significantly enhance PV self-consumption and reduce grid reliance. SES 
outperforms distributed storage in these metrics, while DR mechanisms 
further optimize power resource allocation, achieving superior energy 
efficiency.

5.4.4. Comparative analysis of cost-income for rural residents
The cost-income status for rural residents in different scenarios are 

shown in the Table 11:
By comparing and analyzing the cost-income indicators under the 

four scenarios, it can be seen that Scenario 1 (without ES configuration) 
is more advantageous in terms of economic benefits. However, the grid 
integration of large-scale PV power generation affects the power quality 
of the power system. In order to ensure the safe and reliable operation of 
the power system, the power grid has to increase the cost of distribution 
network upgrading and transformation, and the cost of the system 
external increases, and Scenario 1 is unfriendly to the safe and economic 
operation of the power system.

Fig. 25 presents the changing trends of key indicators in different 
scenarios. Scenarios 1, 2, 3, and 4 exhibit progressively enhanced PV 
local consumption ratios at 37.16 %, 81.57 %, 84.01 %, and 85.03 %, 
respectively, with corresponding power self-sufficiency ratios of 34.37 
%, 75.44 %, 77.70 %, and 78.64 %. However, in scenarios with ES 
configuration, the initial ES investments show a decreasing trend from 
5,425,177 CNY to 5,231,749 CNY and 4,991,814 CNY, and the levelized 
annual costs per rural household decline from 3288 CNY to 3205 CNY 
and 3166 CNY. This demonstrates that the configurations of SES achieve 
enhanced PV self-consumption and reduced power grid dependence 
while achieving lower investment and operational costs. The imple-
mentation of DR mechanisms further optimizes both SES investments 
and the levelized annual costs for rural households.

5.5. Suggestions for enhancing the PV self-consumption and economic 
efficiency of rural distribution networks

Rural multi-DPV clusters combined with SES systems face the chal-
lenge of high costs due to significant initial investment in storage 
infrastructure. However, integrating SES with multi-DPV clusters can 
substantially enhance the self-consumption of rural power distribution 
networks, mitigate the impact of PV integration, and ensure safe, reli-
able, and cost-effective operation, while offering notable environmental 
and social benefits. Thus, improving local PV utilization, optimizing 
system economics, and accelerating capital recovery are essential. The 
following recommendations are proposed: 

(1) Enhance the cost compensation mechanism for DPV and ES sys-
tems: Governments should introduce targeted subsidies or 
incentive policies to reduce both investment and operational 
costs, thereby attracting greater third-party investment.

(2) Implement the time-of-use electricity pricing policy for residents, 
guiding electricity consumption behavior through price signals, 
to achieve the dual goals of local consumption of PV power 
generation and reduction of electricity costs.

(3) Explore diverse market trading models for distributed power 
generation: For instance, aggregated multi-DPV clusters could 
participate in provincial electricity markets, enabling cross- 
regional electricity sales. Alternatively, aggregating distributed 
generation, flexible loads, and ES into a virtual power plant can 
create a balanced unit to participate in grid regulation, allevi-
ating system regulation pressures while generating regulatory 
benefits.

(4) Accelerate smart terminal construction and enhance load 
response capability: Flexible load resources such as electric 
vehicle charging stations, water heaters, and air conditioners in 
rural homes can be managed using intelligent control 

technologies. This would enable “load-source synchronization,” 
adjusting the load power curve based on PV output, thereby 
saving residents’ electricity costs and increasing local PV 
consumption.

(5) Strengthen the construction and upgrading of rural distribution 
networks: A comprehensive enhancement of rural electrification 
is necessary, focusing on building distribution grids capable of 
supporting large-scale distributed renewable energy integration, 
thus facilitating the large-scale development and efficient use of 
renewable energy.

6. Conclusions

Addressing the practical challenge of integrating DPV generation 
into the grid while ensuring its safe and stable operation, this paper 
explores the complementarity between multi-DPV clusters output and 
residential electricity consumption across various villages in rural dis-
tribution networks. To enhance PV self-consumption, a cooperative 
operation strategy for multi-DPV clusters with SES is proposed. A two- 
stage optimization model for SES configuration is developed, with the 
goal of strengthening the PV self-consumption and self-sufficiency of 
rural distribution networks and improving the economic benefits for 
rural residents. The results indicate that: 

(1) The ES system significantly enhances PV self-consumption and 
self-sufficiency. Compared to the non-ES scenario, the configu-
ration of ES increased the PV self-consumption rate by 44.41 %, 
while increasing self-sufficiency by 41.07 %.

(2) Compared to DES, SES demonstrates superior performance in 
enhancing self-consumption and self-sufficiency and cost reduc-
tion. Relative to the DES configuration, SES improved PV self- 
consumption by 2.44 % and 3.46 %, increased self-sufficiency 
by 2.26 % and 3.20 %, and lowered levelized annual costs by 
2.54 % and 3.72 %.

(3) Under the combined influence of SES and DR, PV self- 
consumption and self-sufficiency is further optimized, leading 
to a 1.18 % reduction in the levelized annual costs for rural 
residents.

Overall, the configuration of SES and the adoption of a DR mecha-
nism offer an effective approach to enhancing the PV self-consumption 
and self-sufficiency of rural distribution networks while reducing resi-
dential costs. The findings of this study provide valuable insights into the 
collaborative operation of multi-DPV clusters and SES in rural areas, 
contributing to the sustainable development of rural DPV systems. 
However, this study has certain limitations, particularly regarding the 
cost and benefit-sharing mechanisms of DPV clusters and SES systems, 
which require further exploration. Future research will address this issue 
to enhance the model’s practicality and economic viability.
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