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Abstract—This paper addresses the home energy management 

(HEM) problem for a large number of residential houses, which 

can be regarded as a high-dimensional optimization problem. To 

cope with the high-dimensional issue, the concept of the aggrega-

tor is utilized to reduce the state and action space. And a two-stage 

deep reinforcement learning (DRL) based approach is proposed 

for the aggregators to track the schedule from the superior grid 

and guarantee the operation constraints. In the first stage, a DRL 

control agent is set to learn the optimal scheduling strategy inter-

acting with the environment based on the soft-actor-critic (SAC) 

framework and generate the aggregate control actions. In the sec-

ond stage, the aggregate control actions are disaggregated to indi-

vidual appliances considering the users’ behaviors. The uncer-

tainty of the EV charging demand is quantitatively described by 

the driver’s experience. An aggregate anxiety concept is intro-

duced to characterize both the driver’s anxiety on the EV’s range 

and uncertain events. Finally, simulation studies verify the effec-

tiveness of the proposed approach under dynamic user behaviors, 

and the comparisons also show the superiority of the proposed ap-

proach over the method mentioned in benchmarks. 

Index Terms—Home energy management, electric vehicles 

(EVs), deep reinforcement learning, soft actor-critic, dynamic user 

behaviors. 

I. INTRODUCTION 

IN recent years, to deal with the climate change and reduce car-

bon emissions, there has been a substantial increase in the de-

ployment of distributed energy resources (DERs) in smart grids, 

containing roof-top solar photovoltaic (PV), electric vehicles 

(EVs), battery energy storage (ES), heating ventilation air con-

ditioning (HVAC) [1]-[4], et al. These DERs have the potential 

to improve the energy efficiency and reliability of the electrical 

grid, as well as to provide additional income for households 

through selling excess energy to the grid. However, the integra-

tion of these DERs into the grid also introduces new challenges 

in energy management. Especially in a wide region that com-

prises a considerable number of residential users, managing nu-

merous home appliances and DERs is a critical factor that in-

fluences the economic and secure operation of the power sys-

tems. Fortunately, with the growing availability of smart energy 

devices and advanced metering equipment [5], residential users 

are now capable of home energy management (HEM). With the 

aid of HEM, the operations of home appliances and DERs can 

be reasonably arranged to reduce electricity costs and ensure 

the comfort of consumers [6]. 

Research on HEM for residential houses has largely fallen 

into two categories: model-based and model-free methods. 

Model-based approaches, commonly used for HEM optimiza-

tion, involve creating a mathematical model and using optimi-

zation algorithms to find the best solution, as seen in studies 

addressing electricity costs, user satisfaction, and temperature 

comfort [7], unpredictability in user behavior [8], distribution 

system scheduling [9], and robust multi-objective problems 

[10]. However, these methods necessitate model construction 

and parameter identification. Developing a scheduling strategy 

based on modeling requires the construction of models and the 

identification of parameters. This process requires detailed do-

main knowledge, and the performance may deteriorate due to 

model inaccuracy. Model-free methods for HEM utilize a sin-

gle-agent deep reinforcement learning (DRL) approach to learn 

an optimal schedule plan. DRL achieves this by gaining expe-

rience through repeated interactions with the environment, ra-

ther than relying on accurate knowledge of the environment. 

DRL can be classified into two main types based on the action 

space: discrete methods and continuous methods. The Deep-Q-

Network (DQN) algorithm [11]-[13] is a classical discrete con-

trol method that combines Q-learning and DL. This approach 

improves the adaptability of RL algorithms in large-scale con-

tinuous state space problems by introducing function approxi-

mation. However, DQN is limited by its discrete action space 

and inability to handle random policy problems. Continuous 

DRL, e.g. twin delayed deep deterministic (TD3) algorithm [14] 

and soft-actor-critic (SAC) [15] algorithm, can provide fine-

grained control in continuous action space. By parameterizing 

the policy function, the algorithm can update the parameters of 

the policy network based on gradient ascent. 

Numerous existing studies have adopted DRL in the HEM 

problem and demonstrated its excellent control performance in 
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a dynamic environment. In [16], multi-agent DRL with an at-

tention mechanism is utilized in HVAC control to minimize en-

ergy costs in a multi-zone commercial building. The mixed air 

temperature was used to describe the building temperature reg-

ulated by a group of HVACs. In [17], a DRL model is proposed 

that combines local HEM systems with a global server to opti-

mize the scheduling of multiple smart homes and their appli-

ances. The authors of [18] aim to improve the personalized 

comfort while reducing the electricity cost and flattening the 

demand curve by incorporating human feedback and activity 

into the decision-making process. The aforementioned DRL-

based HEM methods have exhibited promising performance in 

dynamic environments. However, the individual electric vehi-

cle (EV) charging models have mostly been described solely by 

the arrival time, departure time, and desired battery energy, ne-

glecting the distinct characteristics of drivers’ individual behav-

iors. 

Furthermore, when considering the HEM problem for a sig-

nificant number of residential houses, the optimization problem 

becomes high-dimensional, which can result in a significant 

computational burden for system operators [19]. Especially in 

DRL methods, the scheduling problem of a large number of 

household appliances can result in a high-dimensional action 

space, which can lead to computational challenges. As the di-

mensionality of the action space increases, a correspondingly 

greater number of samples is required to obtain an optimal 

scheduling strategy [20]. Moreover, the HEM problem for a 

large number of residential houses is particularly challenging, 

due to the difficulty in accurately modeling the dynamic char-

acteristics and operational patterns of individual household ap-

pliances. The high variability in user behavior, preferences, and 

lifestyles across multiple households further exacerbates this 

challenge, leading to a highly complex optimization problem. 

As a result, it is difficult to directly design a scheduling ap-

proach that can fully capture the diverse needs and preferences 

of individual users. To address this problem, the concept of vir-

tual power plants (VPPs) [21] has been considered one of the 

most promising and effective methods to coordinate the con-

troller with individual residential homes that contain various 

household appliances. All of the appliances are managed and 

scheduled by a single aggregator, or a scheduling coordinator. 

The resources within the VPP can have different ownership, but 

the aggregator serves as the common commercial interface be-

tween the market and grid operators [22]. The authors of [23] 

propose a coordinated operation strategy for a VPP that consists 

of multiple DER aggregators in order to inspire these DER ag-

gregators to provide energy and regulation services. In [24], a 

robust active dynamic aggregation model for the multi-energy 

systems is proposed to describe the maximum feasible region. 

In order to address the challenge of high-dimensional action 

space, the authors in [25] set the energy demands of EVs with 

the same deadline and at the same bus to be the same. In [26], 

the concept of the aggregator is utilized to mitigate the curse of 

dimensionality. In the first decision phase, the aggregator pur-

chases energy from the electricity market. In the second deci-

sion phase, a heuristic dispatch algorithm is proposed to gener-

ate the charging plan for each single EV. By dividing the HEM 

problem into two decision-making stages, the dimensionality of 

the action space is significantly reduced. The EV aggregator 

model in [27] is employed to predict the regulation capacity, 

and individual EVs response to the charging schedule based on 

operating states and laxities. Most of the above work utilizes 

aggregators to deal with the operation problems of DERs like 

EVs or HVACs, but rarely focuses on the coordination of HEM 

for a large number of residential houses containing various 

household appliances. 

In this article, we propose a solution that addresses the chal-

lenge of the high dimensionality of the HEM problem by utiliz-

ing an aggregation approach, and optimizing control actions at 

the aggregator level rather than considering individual appli-

ance actions. Specifically, we propose a two-stage approach 

where, in the first decision stage, a DRL control agent is trained 

to learn an optimal scheduling strategy using the SAC frame-

work, while in the second decision stage, the aggregate control 

actions are disaggregated to individual appliances by taking 

into account the users’ individual behaviors. Portions of this 

work were presented in our previous paper at 2024 IEEE 7th 

Student Conference on Electric Machines and Systems 

(SCEMS) [28]. Compared to [28], the revised manuscript goes 

a step further by considering the driver’s experience, charging 

preference, range anxiety, and time anxiety to describe the 

driver’s individual behaviors for the charging problem of indi-

vidual EVs in the households. 

The main contributions of this paper are listed as follows. 

(1) Rather than managing each individual appliance’s ac-

tions, we focus on controlling the aggregator’s actions. 

We group individual household appliances in a region 

and control them as a collective through an aggregator, 

thereby reducing the dimensionality of the problem sig-

nificantly. 

(2) The disaggregation method of aggregators with dynamic 

user behaviors is proposed to satisfy the electricity de-

mand of household appliances. Unlike the existing stud-

ies [7]-[10], the household appliances compensate for 

each other to meet the power demand of the operator. 

Additionally, the individual charging scheduling plan of 

EVs is formulated considering the characteristics of 

drivers’ individual behaviors. 

(3) A novel continuous SAC control framework is adopted 

to design the DRL-based approach for the scheduling 

problem of aggregators to obtain a fine-grained control. 

By repeatedly interacting with the environment, DRL 

can acquire experience and learn to optimize the sched-

uling without the need for constructing models or iden-

tifying parameters, making it a more flexible and adapt-

able approach. 

The remainder of this paper is organized as follows. Section 

II introduces the system model. Section III introduces the pro-

posed two-stage HEM method. Section IV provides the simula-

tion results. Finally, section V concludes the article. 

II. SYSTEM OPERATION MODEL 

Based on operating characteristics, the residential appliances 

can be classified into three categories: on-site power generation, 

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3577145

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidade de Macau. Downloaded on June 09,2025 at 02:58:53 UTC from IEEE Xplore.  Restrictions apply. 



 3 

storable loads, and non-storable loads [29]. The on-site power 

generation provides power supply for the house, and the surplus 

energy can be sold to the electricity market or stored in the stor-

able loads after meeting the household electricity demand. In 

this paper, we only consider a roof-top PV unit for a house as 

the sole source of on-site power generation for a household. The 

storable loads have the capacity to both store and release energy, 

and they can effectively shift and reduce demand, which con-

tributes to load balancing in the grid. The storable loads mainly 

include HVAC systems, energy storage systems and smart 

lighting [30]. The non-storable loads, which typically consist of 

household appliances such as refrigerators, washing machines, 

and televisions, are unable to store energy and are unable to ad-

just their power consumption in real time. These loads are re-

garded as uncertain energy sources. Therefore, the main control 

objectives are storable loads, including batteries, HVACs, and 

EVs in this paper, as depicted in Fig. 1. In this section, the dy-

namic models of the storable loads in residential houses are pre-

sented. 

A. Battery Model 

In this paper, we take the small-capacity household batteries 

into consideration. The household batteries can release energy 

into the grid for profit, or support the HVACs and EVs at a high 

state of charge (SoC) level. The residual energy of batteries is 

calculated as 

BAT BAT BAT BAT BAT

BAT
BAT BAT BAT BAT

BAT

( 1) ( ) , ( ) 0

( ) 1
( 1) ( ) , ( ) 0

i i i i i

i
i i i i

i

e t p t t p t

e t
e t p t t p t
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


 − +  


= 
− +  



 (1) 

where θi
BAT denotes the dissipation rate of battery i; ηi

BAT de-

notes the conversion coefficient of battery i; pi
BAT denotes the 

power consumption of battery i; ei
BAT denotes the SoC of bat-

tery i. 

And we also consider the operation constraints: 

 
BAT BAT BAT

,min ,max( ) ,i i ip t p p 
 

 (2) 

 
BAT BAT BAT

,max( ) ( 1) 0,i i ip t p t  − − 
 

 (3) 

 
BAT BAT BAT

,min ,max( ) ,i i ie t e e 
 

 (4) 

where BAT
,minip  and BAT

,maxip  are the lower and upper bounds of the 

power consumption of battery i, respectively; BAT
,maxi  is the 

ramping limitation of battery i; BAT
,minie  and BAT

,maxie  are the lower 

and upper bounds of the indoor temperature of battery i, respec-

tively. 

B. HVAC Model 

The function of HVACs is to improve the comfort of resi-

dents by maintaining the indoor temperature within a reasona-

ble range as 

  min max( ) ,t    (5) 

where θ denotes the indoor temperature, and θmin and θmax rep-

resent the lower and upper bounds of the temperature comfort 

zone, respectively. 

The indoor temperature is affected by multiple factors: pre-

vious indoor temperature, ambient temperature, air humidity, 

active power of HVAC system and so on. Considering the en-

ergy storage characteristics of HVAC, the dynamic model can 

be presented as follows: 
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where θ(t) and θamb(t) are the indoor temperatures and ambient 

temperature at timeslot t, respectively; Rhv is the equivalent 

thermal resistance; Chv is the equivalent heat capacity; ηhv is the 

efficiency coefficient; p is the power consumption; Δt is the 

time interval. The dynamic model of HVAC can be expressed 

in a unified form of ES as 
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where pi
HVAC denotes the power consumption of HVAC i; 

HVAC
ie  denotes the indoor temperature of HVAC i;  i

HVAC de-

notes the dissipation rate of HVAC i; ηi
HVAC denotes the con-

version coefficient of HVAC i; σi
HVAC denotes the impact factor 

of the ambient temperature of HVAC i. The aforementioned 

factors are defined as 
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In addition to the above equality constraints, the state variables 

should be limited within a certain range as 

 
HVAC HVAC HVAC

,min ,max( ) ,i i ip t p p 
 

 (9) 
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Fig. 1 Schematic of residential houses integrated with PV. 
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HVAC HVAC HVAC

,min ,max( ) ,i i ie t e e 
 

 (11) 

where HVAC
,minip  and HVAC

,maxip  are the lower and upper bounds of 

the power consumption of HVAC i, respectively; 
HVAC
,maxi  is the 

ramping limitation of HVAC i; HVAC
,minie  and HVAC

,maxie  are the 

lower and upper bounds of the indoor temperature of HVAC i, 

respectively. 

C. EV Model 

The dynamic user behaviors of EVs from multiple residential 

users are uncertain and time-varying. In this paper, the driver’s 

experience, charging preference, and charging habits are jointly 

considered to describe the EV charging model. 

The SoC of EV can be calculated in a unified form of ES as 

 
EV EV EV EV EV( ) ( 1) ( )i i i i ie t e t p t t = − +   (12) 

where pi
EV denotes the power consumption of EV i; ei

EV denotes 

the SoC of EV i; θi
EV denotes the dissipation rate of EV i; ηi

EV 

denotes the conversion coefficient of EV i. 

The power consumption is limited by 
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EV EV EV
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where 
EV
,minip  and 

EV
,maxip  are the lower and upper bounds of the 

power consumption of EV i, respectively; 
EV
,maxi  is the ramping 

limitation of EV i; 
EV
,minie  and 

EV
,maxie  are the lower and upper 

bounds of the indoor temperature of EV i, respectively; Ta and 

Td are the arrival and departure times of EV i, respectively. 

For a residential house, the EV is only connected to the 

charging pile between the arrival time and the departure time 

every day. Within the charging time, the SoC of the EV is af-

fected by the driving experience and driver’s range anxiety 

(RA). RA refers to the anxiety degree of drivers that the EV 

range cannot cover the driving distance before the next charging. 

Thus RA is directly related to the SoC of EV at the departure 

time. And the time anxiety (TA) is introduced to describe the 

anxiety degree of drivers about the uncertain events during 

charging. According to the above analysis, the driver’s anxiety 

can be modeled by the expected SoC 
EV ( )ie t  during charging. 

  
( )/( )

EV ( 1)
( ) , ,

1

a d at t t t

i a d

e
e t t T T
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= 

−
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where α and β are shape parameters. 

A larger α leads to a higher SoC at the departure time, and a 

larger β indicates a higher SoC during charging, which exactly 

characterize the RA and TA, respectively.  

The SoC of batteries and the temperature of houses can 

change flexibly in a range, and the residual energy can be re-

leased to support the EVs. Therefore, for the disaggregation op-

eration strategy, we give priority to the charging requirement of 

EVs. The power dispatched to EV can be expressed as 
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where 
EV ( )iu t  is the power control signal to EV i, which is in-

troduced in detail in Sec III. Fig. 2 depicts the relationship be-

tween the charging power 
EV ( )ip t  and control signal 

EV ( )iu t  of 

EVs. And the variables a1 and a2 in (18) are defined as 

  1( ) , ,a
a d

d a

t T
a t t T T

T T

−
= 

−
 (19) 
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e T e t
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e T

−
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where ta and td are the arrival and departure times of EV i, re-

spectively, and 
EV ( )ie t  is the expected SoC of EV i during 

charging defined in (16). 

III. PROPOSED METHOD 

In this section, the proposed two-stage HEM algorithm is in-

troduced. The first step involves the design of an aggregation 

model for household appliances to reduce the dimension of the 

problem. Then the decision making process of the HEM prob-

lem is formalized as an MDP process. In the first stage of deci-

sion making, a DRL control agent, utilizing the SAC framework, 

is employed to learn the optimal scheduling strategy by inter-

acting with the environment and produce the aggregate control 

actions. In the second decision stage, these aggregate control 

actions are then decomposed into actions for individual appli-

ances while taking into account user behavior. 

A. Aggregation Model 

The appliance model of residential house, introduced in Sec-

tion II, containing batteries, HVACs, and EVs can be uniformly 

modeled as  

 amb( ) ( 1) ( ) ( )i i i i i ie t e t p t t T t  = − +  +  (21) 

 ,min ,max( ) ,i i ip t p p 
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Fig. 2 The relationship between the charging power and control signal of EVs.  
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 ,max( ) ( 1) 0,i i ip t p t  − − 
 

 (23) 

 ,min ,max( ) ,i i ie t e e 
 

 (24) 

where θi denotes the dissipation rate of appliance i; ηi denotes 

the conversion coefficient of appliance i; pi denotes the power 

consumption of appliance i; ei denotes the SoC of appliance i; 

pi,min and pi,max are the lower and upper bounds of the power 

consumption of appliance i, respectively; δi,min is the ramping 

limitation of appliance i; ei,min and ei,max are the lower and upper 

bounds of the indoor temperature of appliance i, respectively. 

The operation costs of the individual appliances are given as 

a quadratic function [31] and can be written as 

 
ope 2

2, 1, 0,( ( )) ( ) ( )i i i i i iic p t a p t a p t a= + +   (25) 

where a0,i, a1,i and a2,i are the operational cost coefficients of 

appliance i. Furthermore, the users’ acoustic discomfort degree 

is considered [32]. The sound pressure level of each household 

appliance is determined by the per-unit value of active power 

as 

 ADD 0.67

,max

( )
( ( )) ( )i

i i i
i

p t
c p t

p
=   (26) 

where ζi is the acoustic weight coefficient of appliance i. 

Thus the aggregator model can be obtained by calculating the 

weighted average value of the parameters as 

 amb( ) ( 1) ( ) ( )M M M M M ME t E t P t t T t  = − +  +  (27) 

 ,min ,max( ) ,M M MP t P P     (28) 

 ,max( ) ( 1) 0,M M MP t P t  − − 
 

 (29) 

 ,min ,max( ) ,M M ME t E E     (30) 

where PM and EM are the power consumption and residual en-

ergy of aggregator M, respectively; PM,min and PM,max are the 

lower and upper bounds of the power consumption of aggrega-

tor M, respectively; EM,min and EM,max are the lower and upper 

bounds of the residual energy of aggregator M, respectively; 

δM,max is the ramping limitation of aggregator M; θM denotes the 

dissipation rate of aggregator M; ηM denotes the conversion co-

efficient of aggregator M; σM denotes the impact factor of the 

ambient temperature of aggregator M. 

The aggregate cost for tracking error is calculated as 

 aggpnl

1
( ( )) ( ) ( ) ( )D L

N
M MM

C P t t PP Pt t
=

= − − −   (31) 

where PD (t) is the power demand; PL (t) is the power of local 

loads, including the roof-top PV units and other non-storable 

loads. 

The aggregate operation cost of aggregator M is given as 

 
ope 2

2, 1, 0,( ( )) ( ) ( )M M M M M MMC P t A P t A P t A= + +   (32) 

where A0,M, A1,M and A2,M are the approximation of operational 

cost coefficients of aggregator M. The aggregate acoustic dis-

comfort cost of aggregator M is given as 

 
ADD 0.67

,max

( )
( ( )) ( )M

M M M
M

P t
C P t

P
=   (33) 

where ζM is the approximation of the acoustic weight coefficient 

of aggregator M. 

The approximation parameters of aggregators can be divided 

into two types: { PM,min, PM,max, EM,min, EM,max, δM,max }, which is 

associated with the operation bounds, the approximation is cal-

culated by directly summing the corresponding parameters; {θM, 

ηM, σM, A0,M, A1,M, A2,M, BM, ζM }, which is associated with the 

dynamic models, the approximation is calculated by the 

weighted average of the corresponding individual parameters. 

The weights can be determined by the rated active power ca-

pacity of appliances [33]. 

B. DRL control of the aggregators (Decision Stage I) 

In the first decision stage, a DRL control agent, utilizing the 

SAC framework, is employed to learn the optimal scheduling 

strategy by interacting with the environment and produce the 

aggregate control actions. The decision-making process for the 

HEM problem is formalized as a Markov decision process 

(MDP) in which the operator optimizes the cumulative reward 

while operating in an uncertain environment. The MDP is de-

fined by a set of five tuples, {S, A, P, R, γ}. S denotes the set of 

environment states observed by the DRL agent. A denotes the 

set of actions. P denotes the transition probability from any state 

s∈S to any s’∈S for any action a∈A. R denotes the immediate 

reward set and γ∈[0,1] denotes the discount rate that penalizes 

future rewards. 

1) State: The operation problem is solved by the DRL agent 

based on the local observation sM,t: 

sM,t = { PM (t), EM (t), PM,min(t), PM,max(t), PD(t), ε (t)} 

where PM (t) and EM (t) are the power consumption and residual 

energy of aggregator M, respectively; PM,min (t) and PM,max (t) 

are the lower and upper bounds of the power consumption of 

aggregator M, respectively; PD (t) is the power demand; ε(t) is 

the power deviation between the power demand and the actual 

power consumption, and ( ) agg

1
= ( ) ( ) ( )

N

MMD LPt P t tt P
=

− − . 

2) Action: The action aM,t∈[0,1] is defined as the power out-

put rate 

 ,min , ,max ,min( ) ( )M M M t M MP t P a P P= + −  (34) 

In this way, the power consumption PM(t) is naturally limited 

within the range [PM,min, PM,max]. The joint action at time step t 

can be expressed as at = (a1,t, a2,t,…, aN,t). 

3) State transition: The system state can be transited from st 

to st+1 with the probability P(st, st+1) = Pr(st+1| st, at). 

4) Reward: Since the control objective of the aggregators is 

to cover the power demand and minimize the operation cost, 

when the system state is transited from st to st+1, the DRL agent 

will receive a reward rt: 

aggpnlpnl cost ADD ADD

1
( ) ( ) ( )

N ope
t MMM

r C t C t C t  
=
 = − +
   (35) 

where the reward function is divided into three parts: the cost 

for tracking error, the operation cost, and the acoustic discom-

fort cost. ωpnl, ωcost, and ωADD are the weight coefficient for the 

three parts. 

5) Objective function: The objective of the DRL agent is to 

maximize the expected value of rewards for the horizon of T 

time steps as 

 ( ) ( )0, ~ ( , ) ,max  
t t

t

T t
t t tts a s a a ar s sJ  

=
===   (36) 
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where  is the control policy that generates action at according 

to state st; the discounted rate γ determines the effects of the 

future reward on the current reward.  

This paper adopts SAC [34], the state-of-the-art continuous 

control model-free RL algorithm, to cope with the high sample 

complexity and improve the stability of model-free DRL meth-

ods. In comparison to standard RL methods, the SAC incorpo-

rates the entropy value of the policy into the rewards as 

 ( ) ( )0, ~
( , ) ( ( | ))max [ ]

t t

T

t tt

t

ts a
s ar sJ


  

=
+  =    (37) 

where H((|s)) is the entropy of policy .  is the temperature 

parameter, which determines the relative significance of en-

tropy with respect to reward. The maximum entropy RL frame-

work improves the exploration efficiency. The SAC algorithm 

endeavors to find a policy satisfying 

( ) ( )0, ~
( , ) ( ( | ))arg max [ ]

t t

T

t tt

t

ts a
s ar s


  

=


+  =   (38) 

The Q-value function in policy critic is calculated as follows 

 
1
~ 1

( , ) ( , ) ( )
t

t t t t s t
q s a r s a V s




+
+

= +  (39) 

where V(st) is the soft state value function and is denoted by 

 ( ) ( )( )( )~( ) , log
tt t t t taV s s a a sq  = −   (40) 

To accommodate the challenges posed by continuous state 

and action spaces, the soft q-function has been parameterized 

using a neural network, with the parameter  as q(st,at). The 

parameters of the critic network are trained by minimizing the 

squared residual error through 

 ( )
1

2

1( , )~ ~
1( ) ( , ) ( ( , ) ( ))
2t t tq t t t t ts a D sJ q s a r s a V s

  
+ +

= − + 
 

 (41) 

where D is the experience replay buffer and 
1

( )
t

V s
 +

 is the esti-

mated state value using a target network. 

The parameter of the actor network is trained by minimizing 

the expected Kullback-Leibler (KL) divergence as 

 ~ ~( ) log ( ) ( , )
t t t t t ts D aJ a s q s a

     = −      (42) 

The learning objective for the parameter α is updated as 

 ~( ) log ( ) H
t t taJ a s

    = − −    (43) 

where H  is the minimum expected value of target entropy. 

Based on the above theory, we propose a power dispatch 

strategy that leverages a learning architecture with the SAC 

framework. The actor network is responsible for determining 

the power dispatch action aM,t based on the states sM,t. The joint 

action at = (a1,t, a2,t,…, aN,t) and the current state determine the 

next state of the environment and the reward function of the 

DRL agent. The information regarding the state, action, and re-

ward, denoted by sM,t, aM,t, rM,t, and the next states sM,t+1, are 

recorded and stored in the relay buffer Di to be used for the 

training the DRL agent. The SAC algorithm consists of two 

neural networks, the actor network  and the soft critic network 

q, which are updated through interactions with the environ-

ment, as specified in (41)-(43). The pseudocode of the proposed 

DRL-based algorithm is depicted in pseudocode form in Algo-

rithm 1. The algorithm consists of two identical actor networks, 

denoted as  and , which interact with the environment and 

determine the power dispatch aM,t. Additionally, the algorithm 

employs soft critic networks, q, which evaluate the quality of 

the actions aM,t under sM,t by approximating the action-value 

function using the soft Bellman equation. The critic networks 

q take the state-action pair (st, at) as input and output the esti-

mated Q-values. The SAC algorithm uses a target network and 

a replay buffer to train the actor and critic networks. The target 

network is a copy of the actor or critic network that is used to 

compute the target value in the training process, and the replay 

buffer stores the state-action-reward-next state information for 

the purpose of training.  

C. Disaggregation Control of the household appliances (De-

cision Stage II) 

In the second decision stage, the aggregator generates a 

schedule plan of individual household appliances to follow the 

aggregate power schedule defined in the first decision stage. 

The process of decomposing the aggregate schedule into indi-

vidual appliance schedules is defined as follows. 

The aggregator meets this power schedule as closely as pos-

sible by using a disaggregation algorithm in three steps: 

1) The disaggregation algorithm collects the appliances’ state 

information including SoCs, users’ individual behaviors, power 

range and so on.  

2) The individual power schedule plan is generated by the 

algorithm. 

3) Each control power value is sent to the corresponding unit. 

The pseudocode of the proposed disaggregation algorithm is 

shown in Algorithm 2. Initially, the power control signal of 

each storable load is allocated in proportion to the power range 

as 

 

,max

,max

,min

,min

( ), ( ) 0

( )

( ), ( ) 0

i
M M

M

i

i
M M

M

p
P t P t

P
u t

p
P t P t

P





= 





  (44) 

The disaggregation algorithm (44) guarantees the feasibility 

Algorithm 1: Training process of the proposed algorithm 

Input: ,  

1.  Initialize the actor network  randomly. 

2.  Initialize the critic networks q randomly 

3.  Initialize an empty replay buffer B. 

4.  for each episode do 

5.  for each state transition step do: 

6.  Obtain decision at according current st using . 
7.  Execute at. 

8.  Obtain reward rt and next state st+1. 

9.  Store the transition {st, at, rt, st+1} into buffer B. 

10.  end for 

11.  for each gradient step do: 

12.  Update weights of critic network using gradient in (41). 

13.  Update weights of actor network using gradient in (42). 

14.  Update temperature parameter using gradient in (43). 

15.  Update weights of target critic network. 

16.  end for 

17.  end for 

18.  Output: ,  
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because the individual power value ui(t) is always within the 

power range [pi,min, pi,max]. Furthermore, there are EVs’ charg-

ing demand as 

 

EV EV EV EV
,maxEV

EV EV EV
,max ,max

( ) ( ), ( )
( )

, ( )

i i i i

i

i i i

u t u t p t p
p t

p p t p

 +  
= 



 (45) 

where the charging requirement of EVs is calculated as (18)-

(20). 

It can be observed that to satisfy the EVs’ charging demand, 

there is extra power produced as 

 
EV EV

extra,

agg

( ) [ ( ) ( )]

M

M i i

i

P t p t u t


= −   (46) 

The extra power should be complemented by other energy 

resources in the same aggregator in proportion to the power 

range as 

 
,max

extra,
,max

( ) ( )
i

i M
M

p
u t P t

P
 =   (47) 

However, after adding Δui(t) to each load, the feasibility 

guaranteed by (44) may be lost. Furthermore, we have not con-

sidered the SoC/temperature boundaries in the analysis above. 

Thus we design an iteration process to allocate the extra power 

while ensuring the feasibility. The iteration rules of the alloca-

tion approach are listed as follows: 

1) The initial state 
(0)

( )iu t  is determined by (44), and the in-

itial extra power 
(0)

extra, ( )MP t  is determined by (46). The initial 

state of the power range 
(0)
,maxip = ,maxip ,

(0)
,maxMP = ,maxMP . The 

initial state of the power allocated to each individual load is cal-

culated as 

 

(0)
,max(0) (0)

extra,(0)
,max

( ) ( )
i

i M

M

p
u t P t

P
 =   (48) 

2) During each iteration step (the number of iterations is 

named iter), for each storable load with pi,max>0, we have 

 

(iter) (iter) (iter+1)
,max

(iter+1) (iter+1)
,max ,max

,max ,max

( ) ( ), ( )

( ) , ( )

( ( )) / , ( 1)

ii i i

i ii i

i i i i

u t u t u t p

u t p u t p

e e t t e t e

 +  



= 


−  + 

 (49) 

The loads with 
(iter+1)

,max( ) iiu t p  or ,max( 1)i ie t e+   are 

predicted to reach the power and SoC range, which are called 

the saturated loads. And we set the power range of the saturated 

loads to 0, so as to avoid allocating power to them. 

 
(iter+1) (iter+1)

,max ,max,max 0, ( ) ( 1)i i ii ip u t p e t e=   +    (50) 

 
(iter+1) (iter+1)

,max,max
aggM

iM
i

P p


=    (51) 

3) Calculate the extra power by minus 
(iter)

( )iu t  of aggrega-

tor M as 

 
(iter+1) (iter) (iter+1)

extra, extra,
agg

( ) ( ) ( )

M

iM M
i

P t P t u t


= −    (52) 

 

(iter+1)
,max(iter+1) (iter+1)

extra,(iter+1)
,max

( ) ( )
i

i M

M

p
u t P t

P
 =   (53) 

4) If 
(iter)

extra, ( ) 0MP t =  is satisfied in all aggregators, the extra 

power has been allocated completely. The output of the algo-

rithm is sent to each units in step 3. Otherwise, iter = iter + 1, 

and return to 2). 

From the iteration process, we can observe that the charging 

demand of EVs and the power schedule defined in the first de-

cision stage are both satisfied as long as the batteries and 

HVACs have residual energy to release. If all the residual en-

ergy is exhausted, the actual power consumption will deviate 

from the aggregate schedule in the first decision stage. Then the 

schedule plan may need to be reformulated to meet the charging 

demand. 

IV. CASE STUDIES 

In this section, simulation case studies are conducted to vali-

date the effectiveness of the proposed operation strategy and 

disaggregation strategy. 

A. Environment Setup 

In the simulation, 8 aggregators are considered, each of 

which contains approximately 1000 households. The simula-

tion environment is based on real-world data and includes var-

ious parameters and operating cost coefficients, as shown in Ta-

ble II. Each household is equipped with an EV, HVAC and an 

energy storage battery. The photovoltaic station’s output power 

is sourced from an eastern Chinese plant, and the first month of 

each quarter (30 days) is used as the training set, totaling 120 

days. The remaining days are used for evaluation purposes. 

The critic network and the actor network both consist of four 

serial fully connected layers. Each layer comprises 128 hidden 

units. The proposed aggregator operator is implanted by Python 

with Pytorch. The hyper-parameters of the learning algorithm 

and proposed approach are listed in Table I.  is the temperature 

parameter, which determines the relative significance of en-

tropy with respect to reward.  is set to 10-2 to provide a good 

balance between exploration and exploitation, ensuring that the 

agent could effectively learn optimal strategies without becom-

ing overly conservative. 

The proposed method is compared with two benchmarks as: 

Algorithm 2: Disaggregation algorithm 

Input: the power control signal to aggregator M PM(t), the driver’s anxi-

ety 

1.  for each DER i in aggregator M do 

2.  Eq. (44) 

3.  end for 

4.  for each EV i in aggregator M do 

5.  Eq. (45)(46) 

6.  end for 

7.  for each DER i in aggregator M do 

8.  Iteration (48)-(53) 

9.  end for 

10.  Output: pi(t) 
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1) Perfect Information Optimum (PIO): PIO refers to an of-

fline optimization method, where all the uncertain information, 

including future outdoor temperature, driver behavior, and ag-

gregator parameters, can be accurately predicted, enabling the 

optimal operation problem to be resolved using an optimization 

solver such as Cplex. 

2) Model Predictive Control (MPC): MPC relies on the pre-

diction of environment information for a short-term future and 

assumes that the controller has knowledge of the distribution of 

each equipment's parameters, which are predicted based on the 

average value. As a result, the operation problem is transformed 

into a deterministic mathematical model and only the first step’s 

schedule is executed. 

B. Training Performance 

As shown in Fig. 3, the curves with the shaded region illus-

trate the average and real daily episode reward, respectively. 

The total reward is divided into three parts: the tracking error, 

the operational cost, and the acoustic discomfort cost, which are 

listed respectively as follows: 

 
agg

agg

pnlpnl
pnl

cost
cost 1

ADD ADD
ADD 1

( )
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N ope
MM
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r C t

r C t

r C t







=

=

 =



= −

 = −






  (54) 

Fig. 3 depicts that the proposed algorithm is capable of  learn-

ing a stable operation strategy through interaction with the en-

vironment within the first 6000 episodes. The above results 

demonstrate that the SAC approach is effective in finding opti-

mal policies for the ES aggregators. 

C. Operation Performance 

The proposed algorithm has improved the ability of the ag-

gregators to track the power demand curve. The actual power 

of aggregators and the power demand curve are shown in Fig. 

4. The orange curve denotes the power demand curve, and the 
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Fig. 3 Training performance of the proposed SAM algorithm. 
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Fig. 4 The energy consumption schedules for the aggregators. 
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Fig. 5 Control performance with different weight coefficients. 

 

Table I 

HYPER-PARAMETERS OF LEARNING ALGORITHM 

Parameters Value 

Learning rate for actor 10-3 

Learning rate for critic 10-2 

Learning rate for α 10-2 

Training episodes 12000 

Discounted factor 0.99 

Mini-batch size  256  

Replay buffer size  10000 

Step in each episode M 50 

Table II 
PARAMETERS OF THE STORABLE LOADS 

HVAC 

Parameters Value 

Min./Max. indoor temperature 20/24 ℃ 

Initial temperature (22, 0.52) ℃ 

Max. power consumption (30, 52) kW 

Temperature dissipation rate (0.98, 0.0052), no more than 1. 

Conversion efficiency (0.1, 0.0012) , no less than 0.08. 

EV 

SoC range [0, 1] 

Battery capacity (50, 0.52) kWh 

Max. charge/discharge power (12, 0.52) kW 

Initial SoC at the arrival time (30, 52) % 

Energy dissipation rate (0.99, 0.0012), no more than 1. 

Conversion efficiency (0.95, 0.012) , no more than 1. 

Battery 

SoC range [0, 1] 

Battery capacity (50, 0.52) kWh 

Max. charge/discharge power (15, 52) kW 

Initial SoC (50, 52) % 

Energy dissipation rate (0.99, 0.0012), no more than 1. 

Conversion efficiency (0.95, 0.012) , no more than 1. 
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actual power of aggregators are illustrated by different colored 

bar chart. The results show that the DRL-based algorithm has 

good performance in terms of tracking accuracy and stability, 

demonstrating its effectiveness in solving the HEM problem. 

As shown in Fig. 5, the tracking error decreases as the weight 

coefficient 
pnl  increases. The proposed algorithm not only 

reduces the operational cost but also improves the acoustic 

comfort level of the users by balancing the power demand and 

supply while taking into account the impact of residential users' 

behavior on the energy consumption. 

The disaggregation performance of aggregator 1 is presented 

in Fig. 6. The simulation results demonstrate the effectiveness 

of the proposed two-stage HEM algorithm in controlling the in-

door temperature, as well as the SoCs of batteries and EVs. The 

proposed two-stage HEM algorithm allows the HVACs and 

batteries to release more energy to support EV charging when 

drivers are more concerned about uncertainty, thus reducing the 

anxiety penalty. As a result, the SoC levels of EVs are able to 

exceed the desired level of 80% before the anxious time, 

demonstrating the effective coordination of HVACs, batteries, 

and EVs to meet power demand and maintain indoor tempera-

ture comfort (20~24 ℃). 

The simulation results in Fig. 7 show that when utilizing the 

MPC method, the indoor temperature of residential homes be-

longing to aggregators 1, 4, 5, and 6 remain around the lower 

bound due to prediction errors, and the SoCs of batteries for 

aggregators 4, 5, and 6 decrease to 0 after t = 48h. These find-

ings suggest that the active power dispatched to these aggrega-

tors by the predictive controller is insufficient to maintain nor-

mal operations for residential users. Additionally, on the 5th day, 

i.e. after t = 96 h, the EVs of the aggregators 4, 5 and 6 fail to 

reach the desired SoC level of 80% before the anxious time.  

D. Comparison with Benchmarks 
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Fig. 8 Comparison of cumulative reward. 

The comparison of the performance of the proposed algo-

rithms and the benchmarks can also be shown in terms of cu-

mulative reward in Fig. 8. In addition to PIO and MPC, we have 

also taken into consideration TD3 [14] and PPO [35] as bench-

marks. The test set contains 300 days from the database. The 

PIO algorithm has the best performance, which is considered 

the ideal result for comparison. The MPC method is highly de-

pended on the predictive accuracy, and we have exhibited in Fig. 

7 (b) that in the highly uncertain environment, the MPC method 

cannot guarantee the long-term operation of ES aggregators. 

Consequently, the cumulative reward of the MPC method is the 

lowest. The control effectiveness of SAC exceeds that of other 

off-policy and on-policy DRL algorithms, including TD3 and 

PPO. SAC performs well and approaches the ideal outcome of 

PIO, with its advantage stemming from non-policy updates and 

the maximum entropy framework. 

V. CONCLUSION 

This paper focuses on aggregators’ problem of defining a 

schedule plan for a large number of residential users, in absence 

of an exact model of each energy source and load. The proposed 

DRL-based approach is evaluated using numerical simulations 
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Fig. 6 Disaggregation results of individual appliances. 
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Fig. 7 Disaggregation results of individual ESs: (a) the proposed method, (b) 

the MPC method. 
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based on real-world data, demonstrating its ability to solve the 

HEM problem economically and effectively by covering the 

schedule plan from the superior grid. The results demonstrate 

the effectiveness of the proposed algorithm in controlling in-

door temperature, battery SoCs, and EV charging, while con-

sidering individual user requirements and uncertainty. Further-

more, a comparison with existing methods indicates that the 

proposed algorithm outperforms other approaches in terms of 

energy efficiency and user comfort. 

In conclusion, the proposed DRL-based approach provides a 

novel solution to the HEM problem, considering the behavior 

uncertainties of the residents and the grid constraints. In the fu-

ture, this work will be further extended to the energy manage-

ment of multi-energy buildings including heat pumps and elec-

tric boilers.  
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