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Abstract—Building clusters are primary entities in urban
power systems, where terminal energy facilities, including
photovoltaic-thermal systems (PV/T) and air conditioners (ACs),
are widely deployed to meet diverse user demands. However,
the operational efficiency of above facilities and user demands
are highly sensitive to meteorological factors, particularly the
microscale temperature distribution surrounding buildings. In
turn, building clusters significantly reshape local microclimate
conditions through waste heat emissions and surface morphology.
To capture this interaction and improve operational efficiency,
this paper proposes a microclimate-interactive energy manage-
ment framework for building clusters, which links urban-scale
microclimate formation to terminal-level energy dynamics. First,
an urban microclimate model is developed that incorporates
building emissions and decomposes the spatial domain into four
layers. Then, refined models for PV/T and ACs are proposed
to characterize temperature-dependent efficiency under varying
microclimate conditions. Furthermore, to address user demand
uncertainty and its correlation with the surrounding microcli-
mate, a distributionally robust chance-constrained optimization
model based on the Wasserstein-metric ambiguity set is developed
to obtain the trade-off between operational robustness and
economic performance. Case studies demonstrate that the pro-
posed model effectively captures hierarchical feedback between
building clusters and surrounding microclimate, and enhances
the robustness and adaptability of terminal-level energy operation
under dynamic environmental conditions.

Index Terms—Building clusters, air conditioners, photovoltaic
and thermal systems, urban microclimate, distributionally robust
chance-constrained optimization.

I. INTRODUCTION

HE building clusters sever as the primary entities for

energy-related activities in urban areas. In terms of en-
ergy consumption, operational demands (specifically for space
cooling/heating, hot water, and lighting) account for 30% of
global final energy consumption and 26% of global energy-
related emissions [1]. Regarding energy generation, rooftop
photovoltaic (PV) has shown considerable potential in urban
building clusters, which will meet 25% to 49% of global
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electricity demand by 2050 [2]. In recent years, significant
attention has been devoted to building energy system opti-
mization and various effective strategies have been proposed
for energy saving [3], energy-efficient technologies [4], peak-
valley regulation [5], and carbon emission reduction [6].
However, there are still two issues requiring further attention:

(i) Dynamic Characteristics of Energy Facilities: Most
existing research assumes that energy facilities operate under
ideal or rated conditions, leading to overly optimistic optimiza-
tion solutions. In reality, deteriorating operating conditions
and overloaded user demands can cause energy facilities to
deviate from optimal efficiency points. Specifically, PV [7]
and temperature-controlled units (e.g., ACs) [8] are highly sen-
sitive to meteorological parameters. As ambient temperature
increases, the heat generated by PV cells and AC condensers
becomes harder to dissipate, resulting in reduced operational
efficiency. In extreme cases, excessively high ambient temper-
atures can even cause these units to shut down [9].

(ii) Interaction with Surrounding Microclimate: Most ex-
isting research relies on macroscale meteorological forecasts
or observations from weather stations as external input [10].
However, the macroscale meteorological model, based on
satellite data, operates at spatial scales exceeding 100 km,
making it inadequate for capturing neighborhood-level varia-
tions. Furthermore, weather stations, typically located in open
spaces, tend to underestimate temperature increases within
building clusters [11]. In contrast, urban microclimate, lo-
calized surrounding buildings with a scale of 1 km, directly
impacts energy facilities and user demands. Moreover, the
microclimate exhibits lower inertia compared to macroscale
model, making it more responsive to building activities [12].

With global warming and increasing urbanization, urban
microclimate phenomena (e.g., urban heat islands [13]), have
garnered widespread attention. On clear days, the scarcity of
green spaces, heat reflection from man-made surfaces, wind
resistance of buildings, and anthropogenic heat accumulation
lead to significant heat accumulation and temperature rise [14].
In certain urban areas, driven by microclimate phenomena,
the temperature rise around the building clusters can exceed
2.5°C, leading to an additional 15% increase in energy con-
sumption density compared to the reference rural areas [15].
Therefore, microscale meteorological analysis for building
clusters is a critical prerequisite for accurately modeling build-
ing energy activities. Several studies have developed numerical
models based on the urban thermal model to simulate the
microclimate temperature distribution [16]. The urban thermal



model divides the space surrounding buildings into the urban
boundary layer, the urban canopy layer, and the urban surface
layer [17], [18]. Furthermore, many researchers have focused
on the impact of building operation on localized urban weather.
Miguel et al. [19] coupled the EnergyPlus with a lumped
thermal parameter model to estimate the temperature and
specific humidity in the near-surface urban environment. Duan
et al. [20] presented a lumped urban-building thermal coupling
model which captures the fundamental physical mechanism
for thermal interactions between buildings and their urban
environment. However, the studies mentioned above primarily
focus on the role of energy system operations in influenc-
ing the microclimate, while neglecting the feedback effect
of changes in microscale meteorological conditions on the
building energy facilities and load demands.

Decentralized solar facilities are critical energy sources and
a promising path toward carbon neutrality for building clusters.
Existing systems can be categorized based on installation
methods (rooftop and facade types) and operational principles
(photovoltaic, photothermal, and photovoltaic-thermal sys-
tems, PV/T). Among these, rooftop PV/T is widely recognized
as an ideal solution with higher efficiency and low-cost instal-
lation [21]. Currently, most research focuses on module design
and static energy efficiency optimization [22]. For instance,
high efficiency photovoltaic cells and composite materials
with enhanced heat transfer are utilized to improve overall
performance [23]. Additionally, novel cooling technologies
(e.g., liquid cooling, air cooling) are adopted to reduce PV
panel temperatures [24]. Integrated PV/T and energy storage
systems are also developed for peak-valley regulation, reduc-
ing reliance on external energy sources [25], [26]. However,
the above studies primarily focus on the static performance
of PV/T and lack the dynamic characterization analysis under
realistic varying microscale meteorological conditions.

Air conditioners (ACs) are the primary electricity consumers
in building clusters, accounting for more than 70% of the
total load during the cooling season [27]. Similar to PV, both
operational characteristics and cooling demand are sensitive
to meteorological conditions. Currently, model-driven, data-
driven, and hybrid data-model-driven approaches have been
proposed to establish numerical relationships among cooling
loads, external environment, and internal user behavior [28].
However, most studies assume that ACs operate under rated
operating conditions with a fixed coefficient of performance
(COP) [29]. In reality, COP dynamically varies with both
the ambient and indoor temperature through experimental
tests [30]. Specifically, when the operating temperature of
condensers becomes too high, the compressor requires more
power to maintain effective heat exchange [31]. Simulta-
neously, the elevated condenser temperature diminishes the
system’s cooling capacity, significantly reducing the COP.
Under the microclimate effects, condensers are subjected to
harsher operating conditions.

Energy demands of building clusters are influenced by
indoor traffic and user behaviors, resulting in high levels of
uncertainty and random fluctuations [32]. To address load
uncertainty, various optimization methods have been proposed,
primarily categorized into stochastic optimization (SO), robust

optimization (RO), and distributionally robust optimization
(DRO). SO employs probability distributions to predict loads
and make decisions based on expected function [33]. However,
it is heavily dependent on the accuracy of the probability
distributions and incurs a significant computational burden
in practical applications. RO eliminates the need for precise
probability distributions by constructing an uncertainty set
[34], [35]. However, it often produces overly conservative
results since the optimal solution must satisfy all worst-case
scenario within the uncertainty set. DRO, which combines the
strengths of SO and RO, has gained significant attention [36].
According to the construction method of the uncertainty set,
the current DRO methods can be categorized into moment
constraint-based and distance metric-based [37]. Among these,
the Wasserstein distance-based approach is widely applied in
building load optimization due to its robustness against outliers
and its capability to capture local variations in distributions
[38]. Furthermore, to ensure demands can be met for the
majority of operational periods, the distributionally robust
chance constraint (DRCC) approach has been introduced [39].
DRCC ensures that optimization solutions satisfy constraints
with high probability during actual operation by defining
chance constraints over the uncertainty set of distributions.

Above all, the dynamic operating characteristics of energy
facilities in building clusters under varying microclimate con-
ditions still exist research gaps, and refined energy manage-
ment models incorporating load uncertainty still need further
analysis. The major contributions of this paper are threefold:

1) We propose a microclimate model for urban building

clusters that incorporates underlying structures and an-
thropogenic emissions. This model offers a numerical
approach to calculate the temperature distribution across
the spaces and surfaces surrounding the building cluster.
2) We propose an integrated dynamic efficiency model for
energy facilities considering surrounding microclimate
interaction. For PV/T, the model quantifies the dynamic
heat transfer process and the electrical/thermal output
under varying meteorological conditions. For ACs, the
model quantifies the dynamic relationship between COP
following ambient and indoor temperature, considering
refrigerant enthalpy change and heat transfer processes.

3) We established a distributionally robust chance-

constrained  optimization framework based on
Wasserstein-metric ambiguity set to address user
demand uncertainty. The proposed model is further
reformulated as a mixed-integer programming problem
and validated in the building clusters of Macao.

We state our problem in Section II. The urban microclimate
model is established in Section III. The dynamic energy
efficiency model is established in Section IV. The DRCC
framework is established in Section V. Numerical experiments
are presented in Section VI. Section VII concludes this paper.

II. INTERACTION BETWEEN URBAN MICROCLIMATE AND
BUILDING CLUSTERS

This paper studies the microclimate-interactive energy man-
agement of building clusters, particularly focusing on terminal-
level energy dynamics and user demand under urban-scale
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Fig. 1. The dynamic energy efficiency of building clusters under surrounding microclimate interaction.

microclimate feedback. As shown in Fig. 1(a), the proposed
microclimate model divides the urban space into boundary
layer, canopy layer, surface layer, and building envelope layer.
Compared to macroscale and mesoscale models, microclimate
model captures neighborhood-level meteorological variations
by considering building energy emissions, underlayer struc-
tures, wind resistance, and solar reflection. Notably, the urban
canopy exhibits a significant temperature gradient that follows
the height and density distribution of buildings. Simultane-
ously, building envelope layers frequently experience consid-
erably higher temperatures than surrounding air due to the
thermal inertia of artificial surfaces.

Terminal energy facilities are installed on exterior surfaces,
with their operational characteristics directly influenced by
surrounding microclimate conditions, depicted in Fig. 1(b).
For PV units, the diode characteristics within cells lead to a
rapid decline in generation efficiency as temperature raises, as
shown in Fig. 1(c). For example, on a clear summer day, a high
temperature results in PV cells only at an efficiency of 18% or
less. For ACs, the heat transfer process is more significantly
influenced by the ambient temperature. ACs transfer heat from
indoors to outdoors through compressor-driven refrigerant,
with the ideal refrigeration cycle represented as 1-2-3-4-1
in the pressure-enthalpy diagram, as shown in Fig. 1(d). In
reality, the actual temperature of the building envelope where
the condensing unit is located will be much higher than the
ideal operating temperature. At this point, the increase in
condensing temperature causes the refrigeration cycle to shift
to 1-2’-3/-4’-1. Compared to ideal conditions, ACs consume
more power P’ at the compressor, but produce less cooling
Q' at the evaporator, implying a significant loss in COP.
Numerical urban microclimate model and dynamic energy
efficiency model of PV/T and ACs are presented below.

III. MICROCLIMATE MODEL FOR BUILDING CLUSTERS
A. Urban Boundary Layer

The urban boundary layer is the initial condition and upper
boundary of urban canopy layer, typically encompassing a
mesoscale meteorological evolution. In this study, the data of

urban boundary layer is sourced from geostationary opera-
tional environmental satellites, specifically from the National
Weather Science Data Centre [40].

B. Urban Canopy Layer

The urban canopy layer, situated between urban boundary
and surface layers, varies in height with building elevation.
The temperature distribution within this layer is significantly
influenced by the type of underlying surface, which impacts
the transfer and accumulation of heat flux around buildings.
For building clusters, urban canopy layer exchanges heat with
neighboring layers (e.g., urban boundary layer, urban surface
layer, building envelop layer) and absorbs anthropogenic heat
emissions, as shown in (1).
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where p, and c, are the density and specific heat capacity
of air, respectively; Tuc e, Tour,ts Tin k,ts and Tey, 1, are the
temperature of urban canopy layer, surface layer, building
indoor and building envelope layer, respectively; Agyr, Atotals
and A, are the area of urban surface layer, building
cluster, and building envelope layer, respectively; V,. is the
control volume of urban canopy layer; g4 is the airflow
rate between urban boundary layer and canopy layer, g, ; =
[(Lb - xo7b)LZ} (1 - /\b>vt; Ly and )\, are the averaging
length scale and building density; v; is the mean wind speed;
Zo,p s the length scale of order; gy is the ventilation rate
between building indoor and urban canopy layer, g

ACHy, x Agy x Hy; ACH, is the air change time; Ay is
the lateral area of heat exchange between the control volume
and its surroundings; Hj, is the average building height; Q.p, +
and Qwase,k,+ are the average anthropogenic heat density and
waste heat; he, ¢ is the convective heat transfer coefficient,
hez,t = 5.7+3.8v4; 1, k, and b are the index of time, building,



and building cluster, respectively; v, is the index set of all
buildings. The remaining terms of (1) on the right-hand side
represent the convective heat from urban boundary layer, the
convective heat from urban surface layer, the anthropogenic
heat within building cluster, the convective heat from building
indoor, the waste heat from air conditioners, and the convective
heat from building envelop layer.

C. Urban Surface Layer

The urban surface layer refers to the upper surface to
the depth having a constant temperature. Within the building
clusters, the urban surface layer absorbs solar heat and ex-
changes it through ground reflection, vegetation transpiration,
and convection with the neighboring layers, as shown in (2).

dTQu’r‘
ZpiCiAziAsur,i dt = (1 - 'Yb) Asurlsun,t

+ KrAsur,r (Tsur,r - Tsur,t) /Amr - QradAsur,r (2)
+ KvAsur,v (Tsur,v - Tsur,t) /Axv - QeupAsur,v
+ her,tAsur (Tuc,t - Tsur,t)

where > p;c;Ax;Ag,y; is the sum of the thermal mass
of surface layer; ¢ is the index of surface types, including
vegetated and man-made underlying surface; p; and ¢; are
the density and heat capacity of surface i, respectively; Ax;
and Ag,,; are the effective depth and area, respectively; 7,
is the albedo; Iy, ¢ is the solar radiation intensity; K, and
K, are the conductivities of vegetated and man-made surfaces,
respectively; Agy, . and Ag,,, are the area of vegetated and
man-made surfaces, respectively; Tsum and Tsum are the
vegetated and man-made underlying temperatures at effective
depth, respectively; Az, and Az, are the effective depth
of vegetated and man-made surfaces, respectively; Q. and
Qrqq are the transpiration and long-wave radiation heat flux,
respectively. The remaining terms of (2) on the right-hand
side represent solar radiation heat, the conductive heat from
man-made surface, the reflection heat from man-made surface,
the conductive heat from vegetable surface, the vegetation
transpiration, the convective heat from urban canopy layer.

D. Building Envelop Layer

The building envelope layer refers to the control volume
from the exterior to interior surface of buildings. The accu-
mulation of solar heat flux in man-made surfaces causes its
temperature to be significantly higher than the surrounding air
temperature. The heat transfer process is described as (3).

dTen,k:,
Tt — (1 — ak) )\k;Aen,kIsun,t

+ hem,tAen,k (Tuc,t - Ten,k,t) (3)
+ hei,k:Aen,k (/—Tin,k,t - Ten,k,t)

where pe, and c., are the density and specific heat capacity
of the building envelope, respectively; V., 1 is the control
volume; aj, is albedo of the building envelope; )y is the
percentage of effective sunlit area of the building envelop;
heir is heat transfer coefficient between building indoor air
and building envelope layer. The remaining terms of (3) on
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Fig. 2. The structure of photovoltaic/thermal system.

the right-hand side represent solar radiation heat, the convec-
tive heat from urban canopy layer, the convective heat from
building indoor air.

IV. DYNAMIC ENERGY EFFICIENCY MODEL CONSIDERING
MICROCLIMATE CONDITIONS

A. Photovoltaic/Thermal System

An integrated photovoltaic thermal system (PV/T) is de-
scribed in this section, with its main components comprising
an evaporator, condenser, electric heater, and water tank,
as shown in Fig. 2. Under clear weather conditions, the
PV/T evaporator absorbs solar radiation to generate electricity
while heating the working fluid. The cooling water is heated
in the condenser and injected into water tank to meet the
load requirements, supplemented by the electric heater. The
numerical models for each component are established below.

1) PV/T Evaporator: Unlike a single PV panel, the PV/T
evaporator uses a heat-absorbing mass cycle for heat recovery,
preventing excessive panel temperatures and enhancing power
generation efficiency. The heat transfer process involves sev-
eral key components: the glass plate, PV panel, heat absorber
plate, evaporator tube, and thermal insulator, as shown below:

Heat flux balance in glass:

dT,
mgcg 7d-(t]’t = Isun,tagAg + hg—a,tAg (Tuc,t — Tgﬂg) (4)
+ hg—pv,tAg (Tpv,t - Tg,t) + Qg—pv,t - Qg—a,t
oA, (T4, — T2
Qg—pv,t _ g ( pu,t 9775) (5)

1/eg+1/epy — 1
Qg—at = Eg04, (Tg4,t - T;lc,t) (6)

where g, a, and pv are the index of Glass, ambient air, and PV
panel, respectively; m, ¢, T, A, a, and € are the mass, specific
heat capacity, temperature, area, absorptivity, and emissivity,
respectively; hg_q ¢ is the convective heat transfer coefficients
between glass and ambient air, hy_qt = 2.8 + 3.004; hg_pyt
is the convective heat transfer coefficients between glass and
PV panel, hg_py: = Nu - koflg—py; Nu and o are the
Nusselt number and Stefan-Boltzmann constant; k, is heat
conductivity coefficient of air; I,_,, is the thickness of the
air gap between glass and PV panel; Qg p, and Qg , are
the radiative heat transfer between the PV panel and glass,
glass and ambient air, respectively. The right-hand side of (4)



represents the solar radiation absorbed, the heat conduction
between the glass and urban canopy layer, the heat conduction
between the glass and PV panel, the radiative heat transfer
between glass layer and surrounding ambient air.

Heat flux balance in PV panel:

dT,
MpvCpy ngtv’t Epot

+ hgfpv,tApv (Tg,t - Tpv,t) - Cngpv,t (7)
+ hpv—ab,tApv (Tab,t - Tpv,t) - va—a,b,t

Epv = Isun,tAvanref [1 - ﬁpv (Tpv,t - Tref)] (8)

T — T4
( pu,t ab,t (9)

1/epy + 1/ — 1

where ab is the index of the absorber plate; F,, in (8) is
the power generation of PV panel; hy,,—qp, 1s the convective
heat transfer coefficients between PV panel and absorber plate,
hpv—abt = N - ko /lpy—aps lpy—ab is the thickness of the air
gap between PV panel and absorber plate; @py,qp in (9) is
the radiative heat transfer between the PV panel and absorber
plate; 7 is the transmittance of PV panel; 7),.. ¢ is the referenced
electrical efficiency with a cell temperature of 298K; 3,,, is the
temperature coefficient. The right-hand side of (7) represents
the solar radiation absorbed, power generation of PV panel,
the heat conduction and radiative heat transfer between the PV
panel and glass layer, the heat conduction and radiative heat
transfer between the PV panel and absorber plate.
Heat flux balance in absorber plate:
dj;atb7t = hpvfab,tAab (Tp'u,t - Tab,t) + Qp'ufab,t
+ hab—etAab (Tet,t - Tab,t) + hab—tiAab (Tti,t - Tab,t)
(10

where et and ti are the index of the evaporator tube and
thermal insulator, respectively; hqp—e: is the convective heat
transfer coefficients between absorber plate and evaporator
tube, hgp—et = d“l’ifbab . %; dap, Lap, and A, are the
thickness, length, and heat conductivity coefficient of absorber
plate, respectively; W,; and D, are the tube pitch and external
diameter of evaporator tube, respectively. The right-hand side
of (10) represents the heat conduction and radiative heat
transfer between the PV panel and absorber plate, the heat
conduction between absorber plate and evaporator tube, the
heat conduction between absorber plate and thermal insulator.
Heat flux balance in evaporator tube:

= Isunta 'UA v T
(e 2 P

oApy

vafab,t =

MabCab

dT,
dtt7t = habfetAet (Tab7t - Tet,t)

+ hetftiAet (/Tti,t - Tet,t) - hetfrﬂ—detLet (Tet,t - Treft))
(11

where r is the index of refrigerant; h.;_4; and h.;—.,. are the
convective heat transfer coefficients between evaporator tube
and thermal insulator, coefficients between evaporator tube
and refrigerant, respectively; d.; and L., are the diameter and
length of evaporator tube, respectively; T'7" is the average tem-
perature of refrigerant in the evaporator. The right-hand side of
(11) represents the heat conduction between the absorber plate
and evaporator tube, the heat conduction between the thermal

MetCet

insulator and evaporator tube, and the heat conduction between
the evaporator tube and refrigerant.

Heat flux balance in thermal insulator:

dTy
= = het— iAe Tty — T
dt t—t t ( t,t t ,t)

+ hticaAvi (Tuct — Teit) + hav—tiAab Tave — Thirt)

The right-hand side of (12) represents the heat conduction
between the evaporator tube and thermal insulator, the heat
conduction between the surrounding ambient air and thermal
insulator, the heat conduction between the absorber plate and
thermal insulator.

Mt Ctq

12)

2) Refrigerant Cycle: Considering the conservation of en-
ergy at a steady state, the refrigerant absorbs the energy
supplied by the evaporator and compressor and then transfers
it to the cooling water through the condenser. The heat flux
balance can be described below.

ev

17
T’t = hetf'r‘ﬂ-detLet (Tet,t - T:J;)

myc,
d . ' (13)
ey (L5~ 10")
it
MyCp— = = hct—TﬂdCt7tLCt TCt o T:O
dt _ ( 2 (14)
e, (T2 = T

where co and ct are the index of condenser and condenser
tube, respectively; T} U and Ty Y% are the inlet and outlet
temperature of refrigerants in evaporator, respectively; Tf, (2”'
and T°9°" are the inlet and outlet temperature of refrigerants
in conélenser, respectively; neglecting pipe friction and heat
loss, TZ;”Ot = Tfﬁ’m, Tff;"’t = Tf’;”i"; det and L.; are the
diameter and length of condenser tube, respectively.

3) Condenser: The twisted condenser tubes ensure suffi-
cient heat exchange between the refrigerant and the cooling
water. Considering the steady state case, the heat flux balance
in the condenser can be described below:

dT, o
mctcctTctm = het—wTdetLet (Tw,t - Tct,t) (15)
+ hct—rﬂ-dctht (Tr(;(t) - Tct7t)
dTee, o
MaywCw ~ = hct—wﬂdctht (Tct,t - Tw,t)
dt . (16)
+ M (T;?,;m - Tgfjft)
Hy = muc (o =T (17)

where w is the index of cooling water; 7" and T’;"" are
the temperature of cooling water in the inlet and outlet of the
condenser; H, is the heat generation of PV/T.

4) Electric Heater: The electric heater assists PV/T in
meeting hot water demand, typically with a fixed thermal
conversion efficiency, which can be expressed as:

Hehq,t = Neh - Peh,t (18)

where Hp, ¢, Pep i, and 1., are heat output, power consump-
tion, and conversion efficiency of electric heater, respectively.
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5) Water Tank: The water tank enables intertemporal heat
transfer of PV/T, working with electric heaters to balance
peak-valley fluctuations in heat loads. The heat capacity bal-
ance in water tank can be described as:

Bpsr = (1= ) Bnse + [0 HRS, — HiG /i) At
19)
where Ej,, ;11 is the heat capacity of water tank at time ¢+ 1;
Ths is the self-loss coefficient; 75" and 7*, are the heat charge
and discharge efficiency, respectively; Hj ¢, and H ;fgft are the
heat charge and discharge power, respectively.

B. Air Conditioners

An air-cooled air conditioning system is described in this
section, as depicted in Fig. 3. The system operates by circu-
lating refrigerant to facilitate efficient heat absorption and re-
lease. During the refrigeration cycle, the refrigerant undergoes
continuous phase transitions (e.g., gas, liquid, or gas-liquid
mixture), making its internal energy variations challenging to
quantify using conventional temperature-based heat transfer
models. In this paper, an energy-efficiency calculation model
is proposed, integrating enthalpy dynamics with heat transfer
principles. The detailed numerical formulations are as follows:

1) Energy Balance in Compressor: The compressor con-
verts mechanical energy into the internal energy of the re-
frigerant, causing it to transition from a low-temperature,
low-pressure gas to a high-temperature, high-pressure gas.
Neglecting friction and heat loss, the work performed by
the compressor is described as an isentropic process. The
temperature and pressure variations of the refrigerant at the
compressor inlet and outlet are governed by (20), while the
compressor’s power consumption is defined in (21).

a1 . a-1
<?’2¢) _ < 2»t> o Toy =T (pﬂ) (20)
D1t T D1t

Peoms=m-R-Ti;-In (p“)
Pt

where ~ is the specific heat ratio of refrigerant; p; ; and p» ; are
the inlet and outlet pressure of compressor, respectively; 717 ;
and T3, are the inlet and outlet temperature of compressor,
respectively; Pom, ¢ is the compressor power; 1 and R are
the mass flow and gas constant, respectively. Neglecting pipe
friction and heat loss, po; and T3 ; are also inlet pressure and
temperature of condenser, respectively; p; ; and 77 ; are also
outlet pressure and temperature of evaporator, respectively.

21

2) Energy Balance in Condenser: Assuming negligible
friction, the heat exchange in condenser is treated as isobaric,
as shown in (22). Driven by the fan, the refrigerant exchanges
heat fully with the ambient air, reaching thermal equilibrium.
Considering microclimate effects, the operating temperature of
condenser installed on the wall surface is approximated as the
building envelope layer temperature, as shown in (23).

D3t = P2t (22)

T3,t = Ten,t (23)

where p3: and T3, are the outlet pressure and temperature
of condenser, respectively. Neglecting pipe friction and heat
loss, p3,. and T3, are also the inlet pressure and temperature
of expansion value, respectively.

As condenser operating temperature rises, the compressor
needs to increase outlet pressure to elevate the refrigerant
vaporization temperature. A specific degree of subcooling
AT, is generally applied to ensure complete liquefaction of
the refrigerant at the condenser outlet. Based on the outlet
temperature setting, the outlet pressure can be calculated by
(24). Using the temperature and pressure, the refrigerant’s
enthalpy in condenser can be determined by (25) and (26).

P3¢ X f [p : (Tg)t + ATCO) s Q = O,R134a] 24)
ha o< f [h : pQ’t,TQ’t,R134a] (25)
hs oc f[h:pags, T3, R134a] (26)

where f [] is state function; @ is the status flag of refrigerant,
@ = 0 refers to refrigerant in liquid state and () = 1 refers to
refrigerant in gas state; R134a is the refrigerant type.

In the condenser, while temperature variation is minimal
during the gas-to-liquid phase transition, a substantial amount
of latent heat is released into the surrounding air. The waste
heat from the condenser can be calculated from the refriger-
ant’s inlet and outlet enthalpy differences, as shown in (27).
Additionally, the fan power is adjusted approximately linearly
with the condensing temperature, as shown in (28).

Qwaste,t =m (h?),t - h?,t) (27)
Prant = Ppesc, + (Tsq — TP2F) - kfan (28)

where QQyaste,+ 18 the waste heat emitted by air conditioner;
Ptyn,¢ is the power of fan; T}’gfﬁ is the baseline reference
temperature; kfqy, is the adjustment rate.

3) Energy Balance in Expansion Value: Assuming an ideal
adiabatic process within the expansion valve, the enthalpy
remains constant between the inlet and outlet, as shown in
(29). Simultaneously, the pressure ratio varies according to the
adjustments made by the compressor, as shown in (30). Based

on pressure and enthalpy of refrigerant, the temperature can

be obtained in (31).
hat = ha (29)

(p2,¢/p1,t) = (D3,4/Dat) (30)



Tyt < [T : hay,pays, R134a] 3D

where T} ¢, pa +, and hy ; are the temperature, pressure, and en-
thalpy of refrigerant in the expansion valve outlet, respectively.
Neglecting pipe friction and heat loss, ps; and T} ; are also
the inlet pressure and temperature of evaporator, respectively.

4) Energy Balance in Evaporator: The refrigerant flows
through the evaporator to absorb the indoor heat and change
from liquid to gas. Similar to condenser, the heat exchange is
isobaric process, as shown in (32). To ensure the refrigerant is
fully vaporized, a specific level of superheat ATy, is typically
maintained at the evaporator outlet, as shown in (33) and
(34). The cooling capacity can be obtained from the enthalpy
difference between inlet and outlet, as shown in (35) and (36).

D1t = Da (32)

Ty =Ting (33)

pag < fp: (Tie — ATey),Q = 1,R134a] (34)
hit o< flh:pig, T, R134a] (35)
Qcoot,t =M (hay — i) (36)

where py 4, T1 ¢, and Ry ; are the outlet pressure, temperature,
and enthalpy of evaporator, respectively.

C. Integrated Energy Efficiency

Energy efficiency is the ratio of output energy to input
energy. For the PV/T, the input is sun radiation and the outputs
include electricity generated by the PV plant and hot water.
The energy efficiency of PV/T is shown in (37). For the ACs,
the input consists of the electrical power consumed by the
compressor and fan, and the output is the amount of cooling
capacity. The energy efficiency of ACs is shown in (38).

Tpo = ZNT (Hpv,t + Epv,t)
2N Lsunst
o — YNt Qeoolt
“ ZNT (Pcom,t + Pfcm,t)

V. DISTRIBUTIONAL ROBUST CHANCE CONSTRAINED
MODEL CONSIDERING DEMAND UNCERTAINTY

x 100% (37)

x 100%

(38)

In this section, a DRCC-based optimal dispatch model for
building clusters is established considering the user-demand
uncertainty. We first introduce the model for electric, cooling,
and hot water loads. Then, we describe the formulation of the
DRCC problem. Finally, we introduce how to reformulate the
proposed model into a tractable problem.

A. User-Demand Model

1) Electric and Hot Water Load Uncertainty: The elec-
tricity and hot water demands of buildings exhibit significant
random fluctuations, closely following the indoor activities of
occupants. The uncertainty electric load lsload, %,+ and hot water
load ﬁload’k,t of building k can be expressed as:

Pload it = Pload,k,t +&e koot (39)

Hivad i = Hioad gt + Enies, (40)

where Pload,k,t and ﬁload,k,t are the forecast value of electric
and hot water load, respectively; & ¢, and &, ¢, are the
forecast deviation of electric and hot water load, respectively.

Here, we construct a Wasserstein metric-based ambiguity
set Py, for uncertainty forecast deviation. The ambiguity
set defines a ball incorporating all distributions P that are
sufficiently close to the empirical distribution P with respect
to the radius 6 [41]:

P = {IF’ € DE) : dw (IP, I@N) < 9} (41)
where D(ZE) is the support space; Py is the reference distri-
bution estimated from the available historical data samples,
Py = %va 5(53)5;““7 ry3 N is the number of available
historical data samplés; (SN is the Dirac distribution center of
sample; dyy is the Wasserstein distance, defined in (42).

S
T (42)
= inf _ /d(fl,fz)ﬂ(d&,d&)
IIem(EXE)

where II is the joint probability distribution of random vari-
ables & and & with marginals Py and Po; ||| , Tepresents an
arbitrary norm on R™; p = 1 and p = 2 is the Manhattan
distance and Euclidean distance, respectively.

2) Cooling Load: Compared with the electric and hot
water load, the cooling load is more directly determined by
meteorological conditions. Here, the cooling load model based
on the first-order heat transfer principle is established in (43).

Tim = he'i,k’Ae’n,k (Ten,k,t - Tin’k7t)

+ PaCaue,k,t (Tuc,t - Tin,k:,t) - Qcool,k,t
+ ﬂkAwin,kIsun,t + Nfl,kAin,inh,k,t
where V" is indoor control volume; f3j, is sunlight transmis-

sion coefficient; Ayip 1 is window area; Ny, ;, is number of
floors; Qp k,+ is indoor anthropogenic heat density.

paca‘/in,k
(43)

B. DRCC-Based Optimiztion Model

1) Objective Function: The objective function is to mini-
mize the total operational cost for all buildings:

NT
min Cepmain,t (44)
2>

where z is decision variables, x= [Ppain,t> Pack,t» Hei k,t>
Hﬁ;‘)m, Hfféfk)t]; Prain,t 1s the main grid power; Py i+ 1S
the ACs power, Pyc k.t = Peom,k,t + Pfan,k,t; Ce is the price.

2) Unit Constraints: The electric load forecast deviation is
offset by the main grid, while the heat load deviation of each
building is managed through cooperation between the water
tank and electric heater:

Hen gt = Hen okt + Oen o tEh kot

Pmain bt = Pmain,t + Z [ge,k,t + ak,tflz,k,t/neh,k}
k€wpy

(45)

(46)



Freh freh h
Hig ke = His kot = BhsetShs kot (47)

o o u
okt = Hpokt + BhoktShs kot (48)

h di
Qeh byt T Bhs it + Bhoket = (49)

where oep k¢, Bﬁ}; . and B,‘ff;k , are the participation factors.
The chance constraints of units with uncertain output under

the uncertainty set are as follows:

]P%ggp (ﬁmain it < PII,];I;I};) > 1 — emaing (50
inf P (P < PHT) = 1= o 1)
. ch,min r7ch ch,max -

]ngg]P’ (Hhs_,k S Hpgre < Hpopy ) >1—¢her (52)
inf P Hdis,min < fdis < Hdisfmax > 1 — gdis (53)

Peb hs,k = thskt = Hhs kit = hs,t
inf P (B < B < BR) > 1—cfy (54
Ens k0 = Ensk,NT (55)

where Emainy > Ech.ts 5;;/’;7{/, eflis,, and el are the predefined
risk parameters.

3) Network Constraints: The network constraints include
the total electrical power balance of the building clusters and
the heat balance of individual buildings:

Pmain,t = Z [Pac,k,t + peh,k,t + pload,k,t - va,k,t (56)
keyy

Hpy gt + ﬁ;ﬁskt + Hep o = I?z’;kt + Hipaagr  (57)

Take (39), (40), (45)-(49) into (56) and (57), the constraints
are reformulated as below:

Pmain,t = E [Pac,k,t + Peh,k:ﬂt + ]Dload,kﬂt - va,k:,t
kepy

(58)

Hyo ot + Hilwy + Henw = Hil oy + Hiade (59
C. Reformulate for DRCC Model

For ease of exposition, we consider a generic DR chance
constraint as:

P{a o <bp, ke [K]} >1—¢ (60)

By applying the Bonferroni approximation method [42] to
handle (60), it is approximately transformed into (61).
{ P{afz <by}>1—ep k€ K]

61
Yoer<eer >0 (o1

We consider the conditional value at risk (CVaR) approx-
imation for the nonconvex DR chance constraint that is a
convex inner approximation [43]. Therefore, we have:

suppep CVaRe, (a{x < bk) <0
= inf[pep P (azx < bk) >1—¢p

= infger (ﬂ + i suppep Ep [a%x — by — ,B]+) <0
(62)

The CVaR constraint under the ambiguity set Py is equiv-
alent to the following linear program [44]:

N
min ﬁ+;<9v+;/,;zi>] <0 (63)
st.afx — b, — B < 2, Vi € [N] (64)
lalls < (65)
BER,z €Ry,Vi€[N] (66)

where [, v, and z; are auxiliary variables.

D. Differential Linearization

To improve the solution efficiency, the differential lin-
earization method is employed to transform the first-order
differential equations to linearized constraints [12]. First, the
first-order differential equations proposed can be be converted
into the following unified form:

dTx= (t)

C——r= = R[T —T*] 4+ Q (1)t € [0, NT]

where C' is the equivalent heat capacity; R is the equivalent
thermal resistance; TX2 (t) is the calculated temperature of
the target layer at time ¢; 7% (¢) is the temperature of layers
associated with target layer; [0, N'T is the optimization period.

Take AT = %, for each time ¢,, in At can be described
as follows:

dTX (ty)  TX(ty + AT) — TX (1)

dt N AT

Further, the computational procedure of TX (¢,,) can be

differential linearized as follows:

RAT

(67)

(63)

ytm € [t1, tr]

7% (1 + Ar) = BAT [ 1) — 7% (1)

2T Q) + T (1)

c
T (ty, : t + mAT) = RgT [TX (1) — T (t; + (m — 1)A7)]
+ %Q (t1) +T*2 (t1 + (m — 1)A7)

(69)

where A7 is the calculation step; At = t;; — t; is the
optimization step; N is the number of differentials.

VI. CASE STUDIES

In this section, two building clusters in Macao are performed
to analyze the dynamic characteristics of building energy sys-
tem with surrounding microclimate and verify the effectiveness
of proposed optimal dispatch strategy. The selected areas are
depicted in Fig. 4 (data from the Institute of Geographic Sci-
ences and Natural Resources Research, CAS [45]), including
the building cluster in University of Macau (58 individuals,
building density 19%, building area 239,202m?) and building
cluster in Macau Peninsula (141 individuals, building density
42%, building area 210,463m?). For each individual building,



Fig. 4. The building clusters in University of Macau (a) and Macau Peninsula
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Fig. 5. Microclimate distribution in low-density (LD) and high-density (HD)
building clusters: (a) Urban canopy layer temperature (Tuc); (b) Building
envelop layer temperature (Ten).

it is assumed that 85% of the effective rooftop area is avail-
able for the installation of photovoltaic panels, and that air
conditioning systems are installed in all selected buildings.
After applying differential linearization and reformulating the
distributionally robust chance-constrained model, the entire
framework is transformed into a mixed-integer programming
problem. The proposed optimization is calculated in MATLAB
R2024a based on Yalmip toolbox by calling the CPLEX
commercial solver, and the PC environment is Intel Xeon Gold
5118 CPU @ 2.30 GHz RAM 64 GB.

A. Dynamic Efficiency and User Demand with Surrounding
Microclimate Interactions

1) Microclimate Distribution: Fig. 5 summarizes the dif-
ferences in microclimate temperature distributions for two
building clusters. It is evident that microclimate temperatures
exceed those observed in macroscale meteorological data. In
the high-density building cluster of the Macao Peninsula,
urban canopy temperatures are elevated by more than 2.92°C,
as shown in Fig. 5(a). Even in the low-density building
cluster of the University of Macau, the temperature increase
reaches a maximum of 1.03°C, with a median of 0.25°C.
The primary factors driving this increase are the significant
anthropogenic heat generated by human activities and the
large number of man-made surfaces, which enhance solar
radiation absorption. In high-density areas, building wind re-
sistance exacerbates heat accumulation, further elevating urban
temperatures. Additionally, compared to the urban canopy
layer, the building envelope layer—typically composed of
cement with low specific heat—heats up more rapidly after
absorbing solar radiation, as shown in Fig. 5(b). At peak solar
radiation, building envelope temperatures reach a maximum of
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Fig. 6. The dynamic COP: (a) Under low-density (LD) and high-density (HD)
building clusters; (b) Under different indoor set temperature (Tin).
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Fig. 7. The building load in low-density (LD) and high-density (HD) building
clusters: (a) Cooling load; (b) Power demand of ACs (Pac).

51.31°C. Additionally, envelope temperatures exhibit minimal
sensitivity to building density.

2) Dynamic COP of ACs: The COP of widely used air-
cooled air conditioners is influenced by both indoor and
outdoor operating conditions. Specifically, the air-conditioning
condensing unit, located in the building envelope, typically
operates in a non-ideal environment for most of the day, as
shown in Fig. 5(b). Fig. 6 illustrates the variation in COP under
microclimate conditions with different indoor set temperatures.
First, under rated conditions (outdoor temperature of 35°C and
indoor temperature of 26°C), the COP remains constant at
3.6. Conversely, considering the realistic conditions, the COP
decreases to 2.43 as the outdoor temperature rises, a reduction
of 30%. The primary reason has been shown in Fig. 1(d).
During the air-conditioning refrigeration cycle, an increase in
outdoor temperature raises the actual condensing temperature
of ACs. At this time, to ensure the refrigerant is fully liquefied
in the condenser, the compressor must consume more power
to increase condensate pressure. Simultaneously, the higher
condensate temperature reduces the cooling capacity of the
evaporator, resulting in less cooling output. Furthermore, in-
door set temperatures generally range from 22°C to 26°C,
depending on user comfort. Fig. 6(b) shows how the COP
varies with different indoor set temperatures. At the highest
outdoor temperature, a 2°C deviation from the indoor set
temperature results in an average COP loss of 0.12. Under
rated operating conditions, average COP loss increases to 0.24.

3) Dynamic Cooling Load: Based on (43), the indoor
cooling load demand is directly influenced by microclimate
conditions, including solar radiation, urban canopy tempera-
ture, and building envelope temperature. Fig. 7(a) shows the
cooling load density for building clusters with varying den-
sities. It is evident that conventional calculations, which rely
on macroscale meteorological parameters, tend to be overly
conservative, with the cooling load density remaining below 90
W/m?. In contrast, the realistic microclimate conditions result
in an average increase of 11.93 W/m? in high-density building
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blocks, with peak values exceeding 30 W/m?. Similarly, in
low-density building blocks, the increase in cooling load den-
sity exceeds 17%. As discussed in the previous section, the rise
in microclimate temperatures reduces the cooling efficiency of
air conditioners. Consequently, the decrease in COP, combined
with the increased cooling demand, leads to significant peak-
to-valley variations, as shown in Fig. 7(b). The green line
represents the AC power density in the low-density building
cluster with ideal COP, while the red line represents the high-
density cluster with the dynamic characteristic. The results
show that, under microclimatic conditions, the peak air condi-
tioning power density increases by more than 70%, reaching
21.52 W/mz, compared to the ideal condition. Furthermore,
the daily peak-to-valley ratio (peak-to-valley/maximum load)
reaches 61%.

4) Dynamic Efficiency of PV/T: The power generation
efficiency of PV cells is strongly influenced by operating
temperature. Under rated test conditions (25°C), the efficiency
of PV panels is 20%, as shown in Fig. 8(a). In reality, the
temperature of PV panels can rise significantly above the ideal
value due to solar radiation absorption. Furthermore, under
microclimatic conditions, the heat from the PV panels is not
effectively dissipated. As a result, the peak temperature of the
PV panels can exceed 50°C, causing the efficiency to drop
to 15.54%. By incorporating a cooling circulation system,
the PV/T employs a condensate to remove heat from the
PV panels, transferring the waste heat to the condenser. This
results in higher electricity generation efficiency compared to
single PV panels, as shown in Fig. 8(a). Additionally, the
PV/T system not only generates electricity but also produces
hot water, as illustrated in Fig. 8(b). It can be observed that
power generation fluctuates in direct correlation with solar
radiation, while the output of hot water lags behind the PV
panel temperature, primarily occurring between 13:00 and
17:00, with peak output reaching 160 W/m?.

B. The Effectiveness of Proposed Optimal Dispatch Strategy

The high-density building cluster in the Macau Peninsula
is selected for detailed analysis. To efficiently construct am-
biguity set, we utilize historical load data to generate an
empirical distribution. A random set of 1,000 examples is then
generated based on a Gaussian distribution, forming the data
pool. Based on (41) and (42), the radius of the Wasserstein
distance between the random and empirical distributions is set
to Amax(dw ). Four test scenarios are set to evaluate the effec-
tiveness of the proposed model: Case 1: Ignoring microclimate
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Fig. 10. The electric heater output of individual building in Case 1-4.

interaction and dynamic characteristics of facilities; Case 2:
Considering microclimate interaction as well as the dynamic
characteristics of the PV/T; Case 3: Considering microclimate
interaction as well as the dynamic characteristics of ACs;
Case 4: Considering microclimate interaction and dynamic
characteristics of facilities.

1) Dispatch Result Analysis: Fig. 9 illustrates the total
amount of purchased electricity for the building clusters across
Cases 1-4. It is apparent that Case 1 significantly underesti-
mates the actual energy demand of the building cluster due
to ignoring real operating conditions. Specifically, comparing
Case 1 and Case 2 in the periods of 12:00 to 16:00, it
is evident that the microclimate interactions lead to a peak
load increase of over 50%. More critically, comparing Case
1 with Case 3, the combination of microclimate effects and
facility energy efficiency reduction nearly doubles the peak
load. This can be attributed to two key factors: first, the
increase in microclimate temperature leads to a rapid rise in the
building’s cooling load demand; and second, both the cooling
capacity of ACs and the power generation capacity of PV/T
are significantly reduced during the midday high-temperature
period. Additionally, the two main grid power curves in Case
3 and Case 4 are similar, indicating that the PV/T heat output
has minimal impact on total energy consumption. This result
is primarily driven by the fact that the selected building
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Fig. 11. The operation state of hot water tank of individual building in Case4.
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cluster in the Macau Peninsula consists mainly of high-rise,
high-density office buildings, where heat loads account for a
small proportion of overall energy consumption. To further
investigate the dispatch strategy for heat loads, we analyze
the results for an individual building, as shown in Fig. 10 and
Fig. 11. First, when the dynamic characteristics of the PV/T
system are ignored, the output of the electric heater closely
follows the heat load profile observed in Case 1 and Case 3.
In reality, a substantial amount of waste heat could be utilized
to meet the hot water demand of users through the PV/T
evaporator in conjunction with the condenser. Notably, in the
periods of 12:00 to 17:00, the operation of the electric heater
shutdown (Fig. 10), while excess waste heat is effectively
stored in the water tank. From 18:30 to 22:00, the water tank
continues to supply heat, meeting the building users’ demand
and significantly reducing the electricity consumption of the
electric heater.

2) The Sensitivity Analysis of DRCC: The Wasserstein-
distance-based DRCC shows sensitivity to both ambiguity
set radius and risk parameters, as shown in Fig. 12. First,
Fig. 12(a) shows the distribution of the Wasserstein distance
between all random and empirical distributions, which is
approximated as a normal distribution. When the radius pa-
rameter A\ is greater than 0.95, the uncertainty set will expand
to include low-probability extreme scenarios. At this time, the
system requires more reserves to address potential extremes.
In contrast, when A is less than 0.85, the uncertainty set
narrows, leading to an overly optimistic optimization result
and increasing the risk of exceeding the limits of the actual
scenario. Besides, it is evident that the system’s operating cost
decreases significantly with smaller values of \. Fig. 12(b)
examines the impact of the risk parameter € on the dispatch
strategy. The risk parameter reflects the system’s tolerance
to uncertainty: a small risk parameter forces the system to
adopt a more conservative strategy to handle the worst-case
scenarios. Conversely, a high risk parameter allows the system
to violate constraints in certain scenarios, potentially leading
to less reliable operation but a reduction in cost. Comparing
Fig. 12(a) and Fig. 12(b), it is apparent that the operating cost
is more sensitive to changes in the ambiguity set radius than

to the risk parameter.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose a microclimate-interactive energy
management framework for building clusters, particularly fo-
cusing on terminal-level energy dynamics and user demand
under urban-scale microclimate feedback. First, the urban-
scale microclimate formation model is proposed to incorporate
underlying structures and anthropogenic emissions. Then, the
terminal-level dynamic energy efficiency model is proposed
to build numerical relationship between energy facilities and
surrounding microclimate. Furthermore, the distributionally
robust chance-constrained optimization method is employed
to address user-demand uncertainty. Finally, the numerical
analysis on building clusters in Macao demonstrates that: (i)
Microclimate conditions vary with building energy activities
and underlying structure changes, leading to temperature dif-
ferences of more than 1.8°C between high- and low-density
building clusters; (if) Building energy activities are highly
sensitive to microclimate conditions, with both ACs and PV/T
experience a more than 20% reduction in energy efficiency,
while cooling demand more than doubles; (iii) The DRCC
optimization strategy effectively addresses load uncertainty
and exhibits sensitivity to ambiguity sets and risk parameters.

However, it is important to note that this study still has some
limitations due to certain simplifications and assumptions.
First, the scope of the model is confined to building clusters
within urban areas, neglecting the impact of urban boundaries
and surrounding oceans. Second, the dynamic facility models
are based on generic typical device structures and parame-
ters, without accounting for the differences in materials and
processes across different brands. Lastly, it is assumed that
each building within the cluster has an energy manager with
the authority to access data and control the operations of
individual buildings.

Based on the analysis presented in this paper, we have
identified significant interactions between building energy ac-
tivities and the surrounding microclimate. Our future work
will focus on the following areas: (i) The challenges posed by
ongoing climate change to the safe and reliable operation of
building energy systems, particularly across different typical
climate zones globally; (i) The development of effective
market mechanisms and pricing strategies to facilitate the
coordinated optimization of building energy activities and
the environment; (iii) The implementation of robust privacy
protection and data handling mechanisms to enhance the
adaptability and scalability of the model’s applications.
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