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Abstract—Sensing-assisted predictive beamforming, as one of
the enabling technologies for emerging integrated sensing and
communication (ISAC) paradigm, shows significant promise for
enhancing various future unmanned aerial vehicle (UAV) appli-
cations. However, current works on sensing-assisted predictive
beamforming predominately emphasized on spectral efficiency
enhancement, while the impact of such beamforming techniques
on the communication reliability was largely unexplored and
challenging to characterize. To fill this research gap and tackle
this issue, this paper investigates outage capacity maximization
for UAV tracking under the sensing-assisted predictive beam-
forming scheme. Specifically, a cellular-connected UAV tracking
scheme is proposed leveraging extended Kalman filtering (EKF),
where the predicted UAV trajectory, sensing duration ratio, and
target constant received signal-to-noise ratio (SNR) are jointly
optimized to maximize the outage capacity at each time slot.
To address the implicit nature of the objective function, closed-
form approximations of the outage probabilities (OPs) at both
prediction and measurement stages of each time slot are proposed
based on second-order Taylor expansions, providing an efficient
and full characterization of outage capacity. Subsequently, an
efficient algorithm is proposed based on a combination of
bisection search and successive convex approximation (SCA) to
address the non-convex optimization problem with guaranteed
convergence. To further reduce computational complexity, a
second efficient algorithm is developed based on alternating
optimization (AO). Simulation results validate the accuracy of
the derived OP approximations, the effectiveness of the proposed
algorithms, and the significant outage capacity enhancement over
various benchmarks. Furthermore, we show that the optimized
predicted UAV trajectory tends to be parallel to the base station’s
uniform linear array antennas with a nonzero minimum distance,
indicating a trade-off between decreasing path loss and enjoying
wide beam coverage for outage capacity maximization.

Index Terms—Integrated sensing and communication (ISAC),
unmanned aerial vehicle (UAV), tracking, low-altitude, outage,
sensing-assisted predictive beamforming.

I. INTRODUCTION

The production of unmanned aerial vehicles (UAVs), also
known as drones, is anticipated to experience sustained rapid
growth over the next decade, reaching a global market value
of over 70 billion dollars by 2030 [1]. To date, the realizations
of numerious emerging applications have been facilitated by
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UAVs’ superior mobility and flexible maneuverability, includ-
ing logistics, remote sensing, environmental detection, indus-
trial monitoring, border surveillance, and emergency commu-
nication [2]. Moreover, the emerging low-altitude economy
(LAE) has attracted significant worldwide attention with the
aim of achieving unprecedently efficient utilization of vertical
space below an altitude of 1000 meters for both existing and
future applications, such as precise agriculture and air taxis
[3]-[5]. However, it can be envisioned that signal interference
and network congestion will intensify considerably due to the
explosive increase in UAV equipment. Under these challenging
circumstances, it is crucial to guarantee the communication
and tracking performance of UAV users and targets, since
these metrics serve the foundations for the aforementioned
applications. In addition, despite the independent progress
made in UAV communication and tracking, such as short
packet communication and global navigation satellite system
[2], incompatibility among standalone systems designed for
different functions causes inefficient use of hardware and spec-
trum resources, which degrades overall system performance.
In recent years, integrated sensing and communication
(ISAC) has been proposed and widely investigated as an
enabling technology for the upcoming sixth-generation (6G)
network [6]-[8]. By effectively utilizing the inherent reci-
procity between sensing and communication, ISAC is expected
to offer more precise and reliable wireless coverage for UAVs,
thereby mitigating signal interference among multiple UAVs
and enabling a greater number of UAVs to simultaneously
access the network. Meanwhile, hardware and spectrum re-
sources can be efficiently integrated, significantly reducing
system overhead and improving overall spectral efficiency.
In addition, benefitting from the widely deployed terrestrial
wireless network infrastructure, a large number of base sta-
tions (BSs) and distributed antennas can effectively serve
as communication or sensing nodes, enabling considerable
signal enhancement and seamless UAV coverage. Therefore,
ISAC technologies present a vital solution to address the
aforementioned issues, while simultaneously providing high-
quality communication and tracking services for UAVs.
Among various existing signal processing and architecture
designs for ISAC, sensing-assisted predictive beamforming is
appealing due to its effectiveness in enhancing both target
tracking accuracy and communication links for users concur-
rently [9]-[11]. Specifically, sensing-assisted predictive beam-
forming refers to the design of beamforming vectors based on
both predicted and measured user information, typically user
directions or positions. Indeed, the prediction of user directions
or positions can be completed prior to the measurement
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from received echo signals. As such, the overhead associated
with channel estimation or beam tracking, such as pilots,
as well as the latency in acquiring user information can be
considerably reduced. Additionally, predicted and measured
user information can be jointly utilized to improve sensing
accuracy compared to conventional schemes that exploit only
the measurement results from the perspective of Bayesian
filtering [11]. As a result, significant system performance
enhancement can be achieved by sensing-assisted predictive
beamforming across various ISAC-enabled applications in
vehicular [10]-[20] and UAV [21]-[23] networks.

Existing studies on sensing-assisted predictive beamform-
ing for communication performance enhancement mainly fo-
cused on the spectral efficiency improvement [10], [12]-[18],
[22], [23]. For instance, a predictive beamforming framework
leveraging extended Kalman filtering (EKF) was proposed
for beam tracking for vehicular communications, achieving
a promising achievable rate enhancement over conventional
feedback-based communication schemes [10]. In [12]-[18],
predictive beamforming-based approaches were proposed to
improve the achievable sum-rate of multiple vehicles in ve-
hicular networks. Moreover, sensing-assisted predictive beam-
forming designs were proposed to track eavesdroppers in
secure communication scenarios, thereby enhancing the se-
crecy rates of legitimate users [22], [23]. However, spectral
efficiency is insufficient for characterizing the performance in
reliable communication scenarios with severe channel fadings
and stringent reliability requirements [24]-[26]. Instead, some
other fundamental communication performance metrics, such
as beam misalignment probability, outage probability (OP),
and outage capacity, are more appropriate for characterizing
the communication reliability. Relatively few investigations
examinated improvements in beam misalignment probability
brought by sensing-assisted predictive beamforming [11], [19],
[20]. Specifically, the impact of beamwidth on the beam
misalignment probability was studied in [11] for predictive
beamforming-enabled vehicle tracking. Furthermore, dynamic
beamwidth designs for vehicle tracking were proposed to
guarantee the tracking accuracy [19] or to maximize the
beam misalignment probability-weighted achievable rate [20].
Nevertheless, beam misalignment probability only partially
characterizes the received signal strength reliability, while OP
and outage capacity fully characterize the reliability of link
capacity and remain largely uncharacterized under sensing-
assisted predictive beamforming frameworks. Without proper
characterization, the roles of prediction and measurement in
sensing-assisted predictive beamforming on communication
reliability cannot be sufficiently understood. In addition, such
characterization is challenging due to the intractable channel
fading probability distribution.

Moreover, unlike vehicles and standalone UAVs whose
trajectories cannot be participated in the overall system de-
signs, the trajectories of cellular-connected UAVs can be
designed and jointly optimized with other system resources
for maximizing the overall system performance [2], [27],
[28]. Particularly, for predictive beamforming-enabled cellular-
connected UAV tracking, the UAV trajectory can only be
partially designed due to the inherently random environmental

variations and control errors in practice [2], [28], [29]. In this
condition, the cellular-connected UAV trajectory/movement
can significantly affect the tracking and communication per-
formance, since the Cramér-Rao bounds (CRBs) for UAV
position/movement estimation are highly dependent on the
spatial relationship between the UAV and the BS [7], [30],
[31]. Consequently, the BS/cellular-connected UAV trajectory
optimization for maximizing the overall system reliability-
aware communication performance, e.g., outage capacity, un-
der the sensing-assisted predictive beamforming framework
remains an open and crucial issue to be addressed.

Motivated by the aforementioned issues, we investigate the
outage capacity characterization and maximization via UAV
trajectory optimization in this paper. Specifically, a cellular-
connected UAV is served and also concurrently tracked via
EKF by a monostatic ISAC BS. Through remote control
from the BS, the predicted UAV trajectory can be proactively
controlled, although it is interfered by control noise modeled
as a Gaussian random process. Within each short time slot,
the UAV motion state is assumed to be deterministic yet
unknown in advance. Meanwhile, the communication perfor-
mance directly depends on a sensing duration ratio between
the prediction and measurement durations at each time slot
under the sensing-assisted predictive beamforming scheme. As
a result, the system communication reliability at each time slot
can be evaluated by OPs and outage capacities at the prediction
and measurement stages, respectively. The main contributions
of this paper are summarized as follows:

o A joint UAV tracking and outage capacity maximization
scheme is proposed for reliable communication, where an
optimization problem for outage capacity maximization is
formulated and addressed at each time slot to optimize
the predicted UAV trajectory, sensing duration ratio, and
target constant received signal-to-noise ratios (SNRs),
subject to constraints on UAV velocity and a maximum
tolerable OP.

o To address the implicit and non-convex objective func-
tion and constraints in the formulated problem, closed-
form approximations of OPs for both the prediction
and measurement stage are proposed based on second-
order Taylor expansions, enabling the full characterization
of outage capacity and a more tractable optimization
problem formulation. To the best of our knowledge, this
paper represents the first effort to characterize the outage
capacity under the sensing-assisted predictive beamform-
ing scheme in ISAC systems.

o An efficient algorithm is proposed to handle the formu-
lated optimization problem with guaranteed convergence,
in which the formulated problem is decomposed into two
feasibility problems addressed by the bisection search and
SCA, respectively. Moreover, the updating rules between
the two feasibility problems are heuristically designed
based on the proved monotonicity of apporximated OPs
with respect to (w.r.t.) the target constant received SNRs.
To further reduce computational complexity and avoid
unnecessary trials involving infeasible solutions, a second
efficient algorithm is proposed capitalizing alternating



optimization (AO), which maximizes the outage capacity
within a few iterations.

« Simulation results validate the effectiveness of our pro-
posed OP approximations, algorithms, and outage capac-
ity maximization scheme. In addition, in the prediction
mean square error (MSE)-dominant case, our proposed
joint UAV tracking and outage capacity maximization
scheme achieves a significant outage capacity improve-
ment compared to benchmarks. Moreover, our results
reveal that the optimized predicted UAV trajectory ends
up with being parallel to the BS uniform linear array
(ULA) antennas with a nonzero minimum distance, which
also demonstrates a trade-off between reducing path loss
and enlarging beam coverage area to maximize the outage
capacity.

Notation: 0,, and 1,,, denote a m x 1 column vector with
all elements equal to 0 and 1, respectively. R denotes the
set of real numbers. O(-) represents the big-O notation for
computational complexity. E,[-] is statistical expectation w.r.t.
the distribution of z. N'(x, Q) denotes a real-valued Gaussian
distribution with a mean vector x and covariance matrix Q and
~ means “distributed as”. < is the element-wise component
inequality. arctan denotes the arctangent function. ® is the
Kronecker product. diag(bs, ..., br,) denotes a diagonal matrix
with b1, ...,br being its diagonal elements. For an arbitrary
matrix A, AT, A=1, det(A), and [A];; denote its transpose,
inverse, determinant, and (i, j)-th element, respectively. For
a real-valued continuous function f(x;y,z2), Vxf(X;y,2)
represents the gradient of f(x;y,z) w.r.t. the vector x given
the values of y and z. g—g and % denote the derivative and
the partial derivative of the variable y w.r.t. the variable z,
respectively.

II. SYSTEM MODEL

We consider a terrestrial BS that employs ISAC signals to
simultaneously track and communicate with a single-antenna
cellular-connected UAV.! As an initial study, it is assumed
that the UAV flies at a fixed altitude of H m, and the BS
is equipped with ULAs comprising /V; transmit antennas and
N, receive antennas.? Furthermore, the uncertainty of the
UAV motion state (i.e., the UAV position and velocity) is
considered owing to practical issues such as control errors
[28]. Moreover, with a sufficiently short time interval AT s,
the UAV motion state can be assumed to be invariant [32].
Therefore, without loss of generality, a three-dimensional (3D)
Cartesian coordinate system is considered, where the BS is
located at the origin and the UAV motion state vector at

the n-th time slot can be denoted by x,, = [, VX, Yn, v3]"

I'The considered scenario can be readily extended to multi-UAV scenarios,
where the BS serves multiple UAVs with time-division or frequency-division
multiple access schemes. The extension to cases with spatial-division multiple
access is non-trivial due to the inter-beam interference and thus worthwhile
future works.

2This model can be readily extended to the case with 3D trajectory
optimization by incorporating the altitude into the state vector. The extensions
to cases with other types of antenna arrays are challenging due to complicated
beam patterns, requiring dedicated future works. To avoid deviation from the

emphasis of outage capacity characterization and maximization, this paper
studies the case with the mentioned system configurations.

— ISAC signal
----* Echo signal
----- » UAV trajectory

Fig. 1. System model illustration.

with z,, v}, yn, and vy, denoting the z-axis coordinate, the
velocity along x-axis, the y-axis coordinate, and the velocity
along y-axis, respectively. Despite the inherent uncertainty in
UAV motion state, it is still possible to partially plan the UAV
trajectory by designing the predicted state vector at the (n+1)-
th time slot, which can be realized by remote control from the
BS [27], [28]. The UAV mobility model and other parts of our
considered system are specified in the following subsections.

A. UAV Mobility Model

The entire UAV flight dynamic can be described exploiting
a discrete-time state evolution model expressed as [30], [33],
[34]
X, = GXpo1 +up +2p,,Vn € {1,2,..., N}, (1)
where G € R**4 denotes the transition matrix, u,, € R**!
denotes the motion control input from the BS, N denotes the
total number of time slots, and z,,, ~ N(0,Q,) denotes the
process noise owing to control errors [33], respectively. The
expressions of G and Q, € R*** can be given by
LAT3 1 AT2
c-noly |q-ne|ian 7|6 @
, respectively, where ¢ denotes the process noise intensity.>
Note that {x, }, Vn, is indeed a random process and cannot
be directly acquired by either the UAV or the BS. Fortunately,
x,, can be predicted at the (n—1)-th time slot and subsequently
estimated at the n-th time slot, which are denoted by x,, =
[T, OX, n, Un]T and X, = [£n, 0}, 0n, 0n]T, respectively.
More specifically, by designing the motion control input as
u, = x, — GX,_1, the relationship between x,, and X,, can
be compactly expressed as
Xn = >u(n + G(Xn—l - )A(n—l) + Zp,n - (3)
Therefore, the UAV trajectory optimization can be performed
by appropriately optimizing X,,. The detailed procedures for
obtaining %,, are dependent on X, and are specified in the
following subsection. Furthermore, a crucial assumption about
the prediction and estimation errors is specified as follows:
Assumption 1 (Small prediction/estimation error): In this
paper, we assume that the prediction and estimation errors,
although inherently exist and follow different probability dis-
tributions, are sufficiently small. Thus, the ground-truth value
of the state vector can be approximated by the predicted and
estimated values, i.e., X, ~ X, ~ X, [10], [31], [35].
Remark 1: Although assumption 1 may appear idealis-
tic, small prediction and estimation errors are practically

3G and Qp can be derived by sampling a continuous-time random process
modelling the UAV movement as in [30], [33], [34].



achievable in scenarios such as millimeter-wave ISAC sys-
tems. Specifically, highly accurate localization/tracking can
be achieved thanks to favorable channel conditions and large
antenna array gain [11]-[13], [20]. Moreover, this study pri-
marily focuses on characterizing the impact of UAV trajecto-
ries on communication reliability under the sensing-assisted
predictive beamforming scheme. Therefore, assumption 1 is
well-justified and does not diminish the necessity and value
of the proposed investigation.

B. Sensing-Assisted Beamforming

In our considered ISAC system, a two-stage predictive
beamforming scheme is implemented by the BS to achieve
real-time UAV tracking and communication [10]-[13], [20],
[22]. At each stage, the BS adaptively designs its beamforming
vector according to the predicted or estimated UAV motion
state, which is detailed as follows:

1) Prediction Stage: At the beginning w,, ratio of the nth
time slot, the BS generates the predicted state vector x,, and
the beamforming vector f, = a(f,) = a(arctan(ij, /%)),
where w,, and én denote the sensing duration ratio and the
predicted azimuth angle, respectively. Based on assumption 1,
predictive beamforming can achieve sufficient accuracy such
that the UAV is reliably illuminated by the main lobe of the
beam, enabling the BS to successfully receive echo signals
from the UAV. Meanwhile, the BS measures the azimuth angle
0,, and distance d,, of the UAV. The measurement model is
explicitly given by

Wn = h(xn) + Zm,n 4
[ arctan(y, /xn) Z1n
- {va%y%m e ©)
where w,, = [0,,,d,]T represents the measured results, 6,

denotes the measured azimuth angle, cfn denotes the measured
distance, zp, , represents the measurement noise vector with
zim ~ N(0,07,),i=1,2, and 07,7 = 1,2 denote the cor-
responding measurement noise variance, respectively. Given
the sparse blockages and scatterings in the vertical dimension,
the communication channel between the BS and UAV can be
assumed to be line-of-sight (LoS)-dominant with free-space
path loss [27], [32], [36]. Consequently, the expressions of

07,1 =1,2 are given by
o _ ai(z} +yp + H?) (27 +yn) 6
017n - 2 9 ( )
PrWnlYy,
) Gad i+ H? ;
02,71, - ’ ( )
PrWn,

and the measurement noise covariance matrix for z, ,, can be
derived as Qu,, = diag(o% ,,, 03 ,,). In (6) and (7), a;,i = 1,2
represent the correspondmg measurement capability coeffi-
cients calculated according to the system configurations and
signal processing designs [10], [31], [35], [37], and p, € R
denotes the sensing power gain coefficient given by [38]

PANsyleNr <0RCS>\2> (8)

o2 (4m)3 )7

where Pp denotes the BS transmit power, Ny is matched-
fitering gain accumulated during the whole time slot, o de-

Pr=

notes the additive white Gaussian noise power at the receiver,
oRrcs signifies the target radar cross-section, and A\ denotes the
carrier wavelength [30].

2) Estimation Stage: During the remaining duration of
the nth time slot, the BS completes its measurement and
obtains the estimated state vector denoted by %,, following the
standard EKF procedures [34], given by the following steps.

a) Obtaining the predicted state vector X,,.
b) Linearization: H,, = ax |xn_xn,Vn
c¢) Calculating the predlctlon MSE matrix:
M,, = GM,_1G" + Q,. 9)

d) Calculating the Kalman gain matrix:

K, =M, H?(Qu, + H,M,, H)~'.  (10)
e) Obtaining the estimated state vector:
Xn = X + Ky (W, —h(x,)). (11)
f) Calculating the estimation MSE matrix:
M, = (1~ K,H,)M,,=(HIQLH, + M, 1) . (12)

The detailed derivation of (12) can be referred to [10]. In (10)
and (12), the expression of H,, is given by

_ ?j'n, O - fnu
Hn _ n+yn 'L%:;;y% (13)
i VEATBAH?

Finally, the BS designs its transmit beamforming vector as
f, = a(0,) = a(arctan (g, /in)).

C. Outage Capacity Characterization

Given the considered predictive beamforming scheme and
channel model, the instantaneous achievable rate at the pre-
diction and estimation stages of the nth time slot can be
represented by

15\3( ) a(d,)|

Ry =logy (1 +7p.n) = log, (1 + 2121 H2 )’ (14)
P|a( ) a(6,)]

Re =10gy (1 + 7e,n) = log, (1 + 2 +y2+H2 ) (15)

respectively, where the coefficient P is defined as P 2
PaBo/o? and By = ()\/47)? represents the channel power
gain at the reference distance of 1 m. Additionally, +, , and
Ye,n denotes the SNR at the corresponding stage, respectively.
Then, because of the assumed invariant actual UAV motion
state within AT s and the dominated LoS path, the random
factors in R, , and Re ,, i.e., Iz(f 1)1123_(2’5)' and ‘1(2 fyzj_(ﬁfg)‘ ,
respectlvely, can be modeled as slow flat fading with a coher-
ence time of AT s [25]. Therefore, the OPs at the prediction
and estimation stage of the nth time slot are expressed as

CGpn =P (fp,n <0), Cen =P (Ee,n <0), (16)

where &, and &, are defined as &, = Yp,n — Yn and
Een £ Ye,n — Y, respectively. Here, ¥, and 4, are the target
constant received SNRs at the prediction and estimation stages
of the nth time slot, satisfying ¢y, = €ou and Ce.p = Eous’

41t is intractable to obtain closed-from expressions of (p,n and (e n. To
address this issue, the values of (p n and (e satistying (pn = €ow and
Ce,n = €out can be searched based on our proposed approximations and
algorithms in Section III and IV, respectively.



respectively, where £, denotes the maximum tolerable OP
[24]. Furthermore, the outage capacities normalized by the
bandwidth at the prediction and estimation stage are given by

Cp,n = 10g2 (1 + 'UYn) 3 Ce,n = 10g2 (1 + 'A}/n) s (17)
respectively. As such, the overall outage capacity at the nth
time slot can be represented by C,, = w,Cp 5, + (1 —wy,)Ce .

D. Problem Formulation

In this paper, we propose a joint UAV tracking and outage
capacity maximization scheme. To be specific, the predicted
UAV trajectory y,, = [%,,¥n|”, sensing duration ratio w,, and
target constant received SNR vector 7, = [Y, 4] are jointly
optimized to maximize the overall outage capacity at each time
slot. The corresponding optimization problem is formulated as

(P1): max Cp (18)
{8n,wn,yn}

st [|dn — An-1]] < vAmxAT, (18a)

?jn Z Ymin, (18b)

Wiin < W, < Winax, (18¢)

#(Ap, Wn,y Yn) <0, (18d)

0 < ¥ < Ymax12, (18e)

where 1 = [#n_1,9n_1]7 denotes the estimated UAV
trajectory at the (n — 1)-th time slot, vama denotes the
UAV maximum velocity, »(qn, Wn,¥n) = Max (¢p.n, Gen) —
Eout Tepresents the maximum OP at the nth time slot and
Ymax = PN/ (32, +H?) denotes the maximum target constant
received SNR due to the maximum beamforming gain and
the minimum path loss, respectively. In (P1), (18a) represents
the maximum UAV velocity constraint, while (18b) represents
a minimum y-axis coordinate constraint of a flyable zone.’
(18c), (18d) and (18e) denote the sensing duration ratio
range, maximum tolerable OP, and SNR range constraints,
respectively. (P1) is challenging to be optimally solved since
the objective function is non-convex and constraint (18d) is
generally implicit.

III. PROPOSED OP APPROXIMATIONS

To address the implicit and challenging constraint (18d)
in (P1), approximations of OP at both the prediction and
estimation stages are proposed. These approximations not only
make solving (P1) tractable but also provide analytical expres-
sions characterizing the outage performance of the considered
sensing-assisted beamforming scheme.

A. Prediction Stage

Let us denote the ground-truth UAV trajectory by q, =
[, yn]T. Then, based on assumption 1, it can be reasonably
inferred that the UAV is consistently illuminated by the main
lobe of the downlink transmitted beam thanks to the small

SIn practice, the UAV position with ¢, = 0 leads to the infinite azimuth
angle measurement noise variance. Thus, we consider a case where the UAV
trajectory is constrained in an area with a nonzero minimum y-axis coordinate
denoted by Ymin > 0.

Ep.n =0.

® UAV — COR

-- aCOR

Fig. 2. A geometric illustration of COR and aCOR.

prediction/estimation error. As a result, the beamforming gain
from the BS can be expressed as

e sin K(Qn; qn
a0,)a(l,)| - ST wS) g
sin ( (dn; Qn))
where the expression of x(q,;q,) is given by
#(qn; Gn) = cos (5n) —cos (6,,)
D (20)

VIR +E il
As such, at the prediction stage, the complementary outage
event, i.e., the event that the UAV does not experience signal
outage, can be formulated as

sin (

K(An; Gn)) _ n(2? +y2 + H?)
(qn7Qn)) N P

From the geometric perspective, condition (21) defines a
region on the (x,,, ¥, )-plane given the fixed altitude H, namely
the complementary outage region (COR) as shown in Fig.
2. Correspondingly, the complementary OP can be calculated
by integrating the probability density function (PDF) of q,
over COR. However, the left-hand side (LHS) of (21) is
intractable for the integral and overly complicated for the
Taylor expansion w.r.t. q,. To tackle this issue, we propose a
two-step approximation with procedures detailed as follows.

In the first step, the LHS of (21) is approximated by its
second-order Taylor expansion w.r.t. the function x(-) at the
point &,, = 0, yielding:

2D

sin (

(N
sin (=5 £(qn; An) u
( ) ~ th - MK;(CITH Qn)Q, (22)
sin ( (qnv qn))
with M = W. Then, the outage event (21) can be

approximated by

S (2 2 2

Tn(@h +yn +H?) N >0, (23)
PM M

In (23), the function x(qy; {,) remains challenging to handle

due to its fractional structure. Thus, the second step is to

approximate the LHS of (23) by the second-order Taylor

expansion w.r.t. the ground-truth UAV trajectory q, at the

5(Qn; Gn)? +

point q,, = q,, and reformulate (23) as
€on fqnsé?)lqn (G an+EN =0, 24
where ¢, is defined by 4, = q, — dn = [0, Un]T repre-

senting the deviation of predicted UAV trajectory from the
ground-truth UAV trajectory, 552% and él(,l,)L denote the Hessian
matrix and gradient of the LHS of (23) w.r.t. the ground-truth
UAV trajectory q,, respectively. The specific expressions of
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Since it can be easily obtained that £R0E02) _ (5,(}1)/2)2
0 holds if 7, > 0 is satisfied, the approximated COR (aCOR)
boundary, denoted by Ep,n = 0, represents an ellipse on the
(£n,Urn) plane, and thus is tractable for integral calculation,
as illustrated in Fig. 2. Besides, (26)-(28) show that the aCOR
boundary largely depends on the predicted UAV trajectory
Qn, indicating that the outage capacity can be maximized by
optimizing the predicted UAV trajectory. Consequently, our
proposed approximated OP at the prediction stage of the nth
time slot is provided in the following proposition.
Proposition 1: Given assumption 1, the OP at the prediction
stage of the nth time slot can be approximated by
Cp,n ~ Cp,n =1- Ea’:n [)v((i'n)] ) (29)
with
erf (Xu(£n)) — erf (X0(%4))
X(dn) & 2
0, Otherwise,

) j:n € [£L7£U]7

(30)

where £, follows a zero mean Gaussian distribution with a
variance of /v\fn = [Mp,]11. The specific expressions of
xu(+), XxL(+), £u, and £ are given by (31)-(33), respectively.

Proof:  Please refer to Appendix A. |

B. Estimation Stage

Let us denote the estimated UAV trajectory at the nth time
slot by @, = [Zn,n]” and define ¢, as &, = qn — qn =
[, Jn]T . Then, similar as the derivation process from (19) to
(24), the COR at the estimation stage of the nth time slot can
be approximated by

fon = fqnénqw(s( N &g + €9, (34)

22402+ H? o ~(2
where §en is given by gm = GntdutH)% _ N g(2)

5 ) P]\/I M71 e,n
and 6 are given by £( ) = }(,,) &n=Gin,fn="5, and 5( ) =

|qn =&, 9n=4n> Tespectively. However, it is generally in-
tractable to directly calculate &, at the (n — 1)th time slot,

since calculating 58(?,2, é'élT)L, and 5(2) requires the knowledge

of Z, and g¢,, which become available only after receiving
the echo signals at the nth time slot. To address this issue,
the approximation q, =~ q, is reasonably applied given
assumption 1. Thus, &, can be further approximated by

e = Eean = fqnsé?nqn + (€6)0) T + €

Wlth gean = 5];()27)L Nn=Hn"* ea n = £pn Nn=Hn and gez(i))n
fp n|%,=%,., which can be calculated at the (n— 1)th time slot.
Meanwhile, similar as the derivation process in the proof of
Proposition 1, ¢, ~ N(0, An) approximately holds with

(35)

O T Mo ] [Mo)is
An XYm n n ’ 36
[Aiy,n A2 [[Mn]:ﬂ [Mn]33:| ( )

and the OP at the estimation stage of the nth time slot can be
approximated by
Ce,n ~ Ce,n =1- Ei" [)A((i’n)] ) 37
with
erf (Xu(&n)) — erf (X0(&n))
X(@n) £ 2
0, i’n S (*OO, S\CL) @] (iU; OO)

) jjn S [iL7iU]7 (38)

The expressions of functions xy (2, ) and )A(L(fcn) are given by

~ /s X nyU( n) Ax n
XU(mn) - ik ) (39)
\/2| det (A,,)|Ay n
~ /s ngL( ) Ax nl
X () = Tl ot (40)
1/2| det ( n)|
with S\UL = :i'L|’v‘/n:’AYn’ i\l'U = x’U|'“yn:‘ynv QL = yL Fn=Hn and

Yu = Yuls, 5, » respectively.®

IV. PROPOSED ALGORITHMS

Given the approximated OPs presented in (29) and (37),
(P1) can be reformulated into an approximated optimization
problem as:

(P2): max Cn 41
{Eln’wnv"/n}
s.t. (18a)-(18c), (18e),
5(Qn Wn, Yn) <0, (41a)

with 32(qn, wn,yn) = max (g}n,(}’n) — €ou- Compared
with (P1), the original implicit constraint (18d) in (P1) has
been replaced by the approximated outage constraint (41a).
However, (P2) remains challenging to be optimally solved

6 Although the COR seems to be quite different from the aCOR in Fig. 2,
the approximations still achieve satisfactory accuracies thanks to assumption
1, which will be further verified in Section V.



due to non-convex constraint (41a) and the coupling among
the optimization variables. To address this issue, an algorithm
based on bisection search is proposed to obtain an efficient
solution to (P2) with guaranteed convergence. To further
reduce computational complexity, a second efficient algorithm
is proposed based on AO.

A. Search-Based Algorithm

To decouple q,, from w,, and ~,,, our proposed search-based
algorithm solves (P2) by iteratively solving two subproblems
formulated as

(P2.1) : Find wy, yn (42)
s.t. (18¢), (18e),
C, =Cj, (42a)

and

(P2.2) : (18a), (18b),

min  3(qp, w;, Vi) St
an

respectively, where C; denotes a given objective value in the
i-th iteration, and (w;,~y;) denotes the solution to (P2.1). To be
specific, our proposed search-based algorithm solves (P2.1) to
generate a candidate solution (w;, «;) and subsequently evalu-
ate its feasibility to (P2) by solving (P2.2) in the ¢-th iteration.
If 3¢(Q;,w;i, ;) < 0 holds with q; denoting the solution to
(P2.2), (q;,w;,~y;) constitutes a feasible solution to (P2), and
a larger objective value can be given in the (i + 1)-th iteration
to maximize the outage capacity. However, it is intractable to
exhaustively check the feasibility of all solutions to (P2.1).
Moreover, it is challenging to design the updating rule of
the given objective value in the (i 4+ 1)-th iteration without
loss of optimality to (P2) since the function 3¢(qy,, wn,¥n) is
complicated and non-convex. To tackle this issue, our proposed
search-based algorithm heuristically designs the subalgorithm
for (P2.1) and the updating rule of the given objective value
based on the monotonicity of 3(Qqy,, Wy, ¥,) W.It. 7, given
in the following proposition.

Proposition 2: Given any feasible q; and w; to (P2),
the function 32(q;, w;,,) is a monotonically nondecreasing
function of ~,,.

Proof:  Please refer to Appendix B. |

Proposition 2 indicates that it is easier to identify feasi-
ble solutions to (P2) with smaller target constant received
SNRs. Let S; = {(wn, dn)|5(dn, wn,7y:) < 0} and S; =
{(wn,qn)\%(qn,wn,'y;) < 0} denote the feasible set for
(P2) given ~; and ;. respectively. Then, if ~; > ')/ is
satisfied, S; C S holds because all the elements in S; satisfy

PGS wm'yt) < 3¢(Qn, Wn,~:) < 0. Thanks to the continuity
of 3(Qn, Wn,Yn) W.I.t 4, in most parts of COR, the feasible
set 8; probably contains elements not belonging to S;, which
further indicates a higher chance of finding a feasible solution
to (P2) in S; than in S;.

Inspired by this observation, the subalgorithm for (P2.1) is
designed as a two-layer bisection search. Note that the feasible
set for (P2.1) can be expressed as a set of line segments
rotating around the point (C;, C;), which can be divided into
two convex sets by considering the cases with C},,, > C¢ .,
and Cp,, < C. p, respectively. In each case, C,, increases with

~. and either increases or decreases with w,, monotonically.
Consequently, the bisection search can be applied to obtain a
converged solution to (P2.1). To be specific, in each case, Cj, ,,
and w,, are searched in the inner and outer layer, respectively,
as follows:

1) Inner layer: The searched value of C, in the k-
th iteration, denoted by C’p 1, 1s selected from an interval
[Cp s Cp &), Where CL '), and C . denote the lower and upper
bounds of Cj x, respectlvely, [39] Accordingly, the searched
value of C., in the k-th iteration can be obtained from
(42a) and denoted by C. . Then, the corresponding target
constant received SNR vector v, = [Yx,4x]” is obtained
by 5 = 2°+ — 1 and 4, = 2%* — 1. Next, the fea-
sibility of (wj,~y,) is checked by substituting w; = w;
and v; = - into (P2.2), where w; denotes the searched
value of w, in the j-th iteration of the outer layer. If a
predicted UAV trajectory ¢y, satisfying ¢(qr,w;,vx) < 0
can be obtained, then the solution to (P2.1) is obtained as
(Eliv Wi, 71) = (61167 wjv ’Yk) Otherwise if Cp n((vlkv Wy, ’?k) >0
holds, Cp 41 € [Cpy, Cpi) is heuristically updated in the
(k + 1)-th iteration to increase the possibility of finding a
predicted UAV trajectory feasible to (P2) based on Proposition
2.1f Gpn (Qr, wj, Vi) > 0 is not satisfied, ¢y (Qr, wj, %) > 0
must hold and C,, x4+1 € [Cp i, Cgk] is updated in the (k+1)-
th iteration so that C; ;41 could be smaller given a fixed C;.
Such updating does not end until a feasible solution to (P2)
is found or the search error reaches the tolerance.

2) Outer layer: 1f no feasible solution to (P2) is obtained
when the inner-layer search terminates, the searched value of
the sensing duration ratio is updated in the outer layer. In
the case with Cp,, > Ce s wjt1 € [wj, wY] is heuristically
updated in the outer layer because a line segment with a larger
w; contains points with smaller C., given the same C, .,
which possibly facilitates the search for a feasible solution to
(P2). Comparatively, w; 1 € [w},w;] is updated if the inner-
layer search fails to obtain a feasible solution to (P2) in the
case with Cp, ,, < Cq .

If the two-layer search still finds no feasible solution to
(P2.2), a smaller objective value is given in the (i + 1)-
th iteration of our proposed algorithm. The search for an
appropriate objective value can also be effectively performed
via the bisection search.

To address the non-convex objective function in (P2.2),
the subalgorithm for (P2.2) applies the SCA technique to
efficiently obtain a locally optimal solution [40]. In the m-th
iteration, (P2.2) is solved with the objective function replaced
by a surrogate function based on the second-order Taylor
expansion, given by

;fa(élm§ql§n—17wj’7k) = ;f(cvll;:n,—l;wj77k)
+ V(A 15 wj, 1) (@m — e y)
+ Qltm — a1 1%

where ¢, _; denotes the Taylor expansion point in the (m—1)-
th iteration and @ is a given positive real number ensuring the
convexity of (43). Problem (P2.2) with the objective function
replaced by (43) is a convex optimization problem and can be
optimally solved by standard numerical convex programming

(43)
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Fig. 3. Accuracies of proposed approximated OPs and CORs under different qy,.

solvers such as CVX tools [41].

B. AO-Based Algorithm

The computational overhead of our proposed search-based
algorithm mainly exists in the subalgorithm solving (P2.2) ow-
ing to the complicated objective function. Note that the number
of times of solving (P2.2) depends on the inner layer iterations
of the two-layer search. However, the searched variables w;
and ~; may be infeasible to (P2) in each iteration of the inner
layer search, leading to an unnecessary trial of solving (P2.2).
To significantly reduce these redundant computations, a second
algorithm for (P2) is proposed based on the AO method, where
the obtained sensing duration ratio and target constant received
SNR vector are always feasible to (P2) in each iteration. In
this way, the computational complexity of solving (P2) can be
reduced.

Given a predicted UAV trajectory q,, = q; satisfying (18a)
and (18b) in the ¢-th iteration of our AO-based algorithm, (P2)
can be simplified as a subproblem formulated as

(P3.1) : Cy (44)

max
{wn,Yn}

s.t. (18¢), (18e),

7(Qi, Wn, Yn) < 0. (44a)

To handle the non-convex objective function and constraint
(44a) in (P3.1), w, can be heuristically searched by a one-
dimensional search, such as the golden section search [42].
As such, the subproblem of (P3.1) given the searched w,, is
a convex optimization problem thanks to Proposition 2, and
thus can be optimally solved by the bisection search [39].
Then, given the obtained solution to (P3.1) denoted by w; and
~; in the ¢-th iteration, our proposed algorithm heuristically
searches a predicted UAV trajectory q,, both feasible to (P2)
and possibly resulting in a larger objective value by solving
(P2.2) and updates q;+1 by the obtained solution to (P2.2).

C. Convergence and Computational Complexity Analysis

The computational complexities of our proposed search-
based and AO-based algorithm can be analyzed as fol-
lows. Specifically, the number of iterations needed for the
convergence of the bisection search for w, and Cj, can
be given by I, = logy (|(Wmax — Wmin)/€w]) and Ic =
log, ([logy (1 + Ymax)/€c|), rtespectively, where e, and ec
denotes the tolerance of the bisection search for w,, and

Chp,n, respectively [39]. Thus, the computational complexity
of our proposed search-based algorithm can be given by
(9(2IW[§JA), where Ju represents the number of iterations
needed for the convergence of the SCA to solve (P2.2). In
comparison, the computational complexity of our proposed
AO-based algorithm can be given by O(I, Ic + J,), where I,
denotes the number of iterations needed for the convergence
of the one-dimensional search for w,. Assuming I, ~ IV/V,
the computational complexity of our proposed AO-based
algorithm is generally lower than that of our search-based
algorithm. Nevertheless, the convergence of the search-based
algorithm is guaranteed thanks to the guaranteed convergence
of the bisection search while the convergence of the AO-based
algorithm is not guaranteed owing to the heuristic search for
Q.- To ensure practical applicability, a maximum number of
iterations can be predetermined to force the termination of
AO-based algorithm.

V. SIMULATION RESULTS

In this section, numerical results are provided to verify the
effectiveness of proposed OP approximations and algorithms.
Unless specified otherwise, the following system parameters
are used: Py = 0.1W, orcs = 0.2m?, A = 0.0lm, o2 =
—80dBm, H = 50m, AT = 0.02s, vz max = 30m/s, Ny =
10%, N = 103, wpin = 0.1, and wmay = 1 [31], [43], [44].

A. Proposed OP Approximations

Fig. 3(a) and Fig. 3(b) illustrate the accuracies of our
proposed approximated OPs at the prediction and estimation
stage, respectively, with three typical predicted UAV positions.
Specifically, the Monte Carlo results in Fig. 3(a) and Fig. 3(b)
are obtained by simulating the OP results with random noises
(including the initial noise, process noise and measurement
noise) in one time slot. The number of Monte Carlo simulation
runs is set to 10%, and other specific system parameters are
given by a1 = ay = 01, Ny = N, = 16, N = 1,
wy, = 0.5 and My = 10721 [20], [31], respectively. It can be
observed that our proposed OP approximations closely match
the Monte Carlo results in the cases with q,, = [0,7]7 and
4, = [0,15])T, thus validating the proposed approximation
accuracy and effectiveness.” However, our proposed OP ap-
proximations are less accurate in the case with q,, = [0, 3]7,

"Unless specified otherwise, the OP refers to our proposed approximated
OP in following paragraphs for brevity given the verified accuracy.
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Fig. 4. OPs and CORs with different q,, and N.

especially at the prediction stage, which indicates that the
proposed approximation accuracy is conditional on the UAV
position. To explain such property, Fig. 3(c) demonstrates the
relationships among the dominant part of ¢,, PDF, COR and
aCOR in the cases with ¢, = [0,3]7 and q, = [0,7]7,
respectively, given the target constant received SNR +,, = 35.
Note that the COR with q,, = [0,3]T is the same as that
with q,, = [0,7]%, since (21) is irrelevant to Z,, and %, given
Z, = 0. In the scenario with g, = [0,7]7, despite the seem-
ingly considerable difference between the COR and aCOR, our
proposed approximation is still accurate because both the COR
and aCOR contain the dominant part of §,, PDF, which verifies
a condition for our proposed approximation being accurate: the
prediction/estimation error must be sufficiently small such that
the difference between COR and aCOR can have negligible
impacts on the integral of the highly concentrated {, PDF.
In contrast, in the case with q,, = [0, 3]7, both the COR and
aCOR intersect with the dominant part of q,, PDF, and thereby
the difference between the COR and aCOR causes non-
negligible approximation accuracy loss. Furthermore, although
it is intractable to analytically characterize the relationship
between the proposed approximation accuracy and the UAV
position, (18b) is considered in this paper as a conservative but
efficient constraint on UAV trajectories to avoid the low OP
approximation accuracy, such as the case with ¢,, = [0, 3]7.

To obtain important insights into the relationship between
the UAV trajectory and OPs, Fig. 4(a) and Fig. 4(b) illustrate
the OP at the prediction stage within a given range of q,, with
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N, = 32 and N, = 64, respectively.® A typically high target
constant received SNR is set as ,, = 0.975ymax for both cases,
and other system parameters are specified as: My = 10741,
N =1, yuin = 3 m and a; = ap = 0.1. As shown in
Fig. 4(a) and Fig. 4(b), the optimal predicted UAV trajectories
resulting in the minimum OP exist at the line of ¥, = Ymn,
i.e., the minimum distance from the BS, with a certain z-axis
coordinate given by +5.8 m in both cases. Around the optimal
predicted UAV trajectories, there exist certain regions where
the OP is relatively low. Compared to the case with N, = 32,
the low-OP region with N; = 64 becomes smaller and more
concentrated at the optimal predicted UAV trajectories. Also,
the positions near the direction 5n = 0° are not contained
in the low-OP region with N; = 64. To explain such results,
Fig. 4(c) and Fig. 4(d) show the accurate CORs with different
predicted UAV trajectories q,, corresponding to the cases in
Fig. 4(a) and Fig. 4(b), respectively. In both cases, the COR
width increases when the predicted UAV trajectory q, varies
from the direction én = 90° to én = 0°, which is the
main reason why the optimal predicted UAV trajectory q is
located at the line of ¢,, = ymin. However, the UAV should be
sufficiently close to the BS due to the potentially severe path
loss, and the requirement of letting its dominant part of ,,/q,,
PDF be contained in the COR. Therefore, the predicted UAV
trajectory Qy, achieves a trade-off between minimizing the path

8The results about the approximated OP at the estimation stage is similar
to those at the prediction stage, thus not presented for brevity.
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loss and being covered by the mainlobe beam for minimizing
the OP. Moreover, as illustrated in Fig. 4(a) and Fig. 4(b), the
smaller low-OP region with N; = 64 is due to the narrower
beam pattern generated by the larger transmit antenna number.

B. Proposed Algorithms

Fig. 5(a) shows the convergence behaviour of our proposed
search-based algorithm and AO-based algorithm. The initial
state of the UAV is given by xo = [4,0,0,0]7 and the initial
estimated state variables are represented by Xo = x¢ + Z¢
with zy = [0.083, —0.001,0.037,0.042]7. The other system
parameters are given by: goy = 1073, a3 = as = 0.7,
N, = N, = 64, N = 1, and My, = 1073I. As shown
in Fig. 5(a), the convergence of our proposed search-based
algorithm is verified and our proposed AO-based algorithm
also exhibits satisfactory convergence performance. Although
slight fluctuations of the objective values do exist, the objective
value obtained by the AO-based algorithm is barely more
inaccurate than by the search-based algorithm. This is because
the objective value usually varies slightly in the feasible
set of (P2), and our proposed AO-based algorithm quickly
approaches the near-maximum objective value by solving
(P3.1). Therefore, our proposed AO-based algorithm is also
effective and has a relatively lower computational complexity
than the search-based algorithm.

Fig. 5(b) demonstrates the varying trends of the objective
value w.r.t. the sensing duration ratio w,, with different UAV
positions. The initial states of the UAV in the two cases are
given by xo = [4,0,0, 0] and x¢ = [0,0, 4, 0], respectively.
The other system parameters are as those in Fig. 5(a) except
the OP threshold given by €4y = 1072. It can be observed that
the impact of w,, on the objective value with qo = [0,4]7 is
much larger than that with qo = [4,0]7". This is because, when
the UAV is at [0,4]7, the state measurement provides a highly
accurate estimation of the UAV trajectory and thus C. ,, can be
quite larger than C}, ,,. Under such circumstances, the sensing
duration ratio w,, achieves a fundamental trade-off between
sensing and sensing-assisted communication: when w,, is
too small, the matched-filtering gain is insufficient to obtain
highly accurate sensing results and thus cannot significantly
enhance the communication efficiency or reliability; however,
when w,, is exceedingly large, the duration of enjoying the
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highly accurate beam alignment from sensing becomes limited,
which also leads to sub-optimal communication performance.
In contrast to the case with qg = [0,4]7, the sensing gain is
negligible when the UAV is at [4,0]7 due to the almost infinite
measurement noise variance of the azimuth angle, resulting in
the minor effect of sensing duration ratio w,, on the objective
value. Therefore, when the UAV trajectory is infavorable to
sensing, incorporating the measured results contributes little
to the outage capacity enhancement and thus the overhead for
real-time state measurement can be saved. Moreover, Fig. 5(b)
verifies that a near-optimal solution can be obtained by the
subalgorithm for solving (P3.1) of the AO-based algorithm.

C. UAV Trajectories and Communication Performance

In this subsection, the results of our proposed UAV tra-
jectory optimization scheme are compared with those of
benchmarks in the prediction MSE-dominant (PMD) and
prediction MSE-nondominant (PMnD) case, respectively. In
the PMD case, the prediction MSE is so much smaller than
the measurement MSE that K,, ~ 0 holds [45], which leads
to the estimation MSE donimated by the prediction MSE,
ie, M, ~ M,,, due to (12). Comparatively, the PMnD
scenario refers to the case where the prediction MSE is not
sufficiently smaller than the measurement MSE to satisfy
K,, = 0, indicating that the measurement MSE is small and
the measured results are useful for decreasing the estimation
MSE. In both cases, our proposed UAV trajectory design is
compared with the following benchmarks:

o Straight flight and hover (SFH): The UAV directly flies
towards a specific position denoted by qr with its maxi-
mum velocity va max and then hovers at qg [46].

o Posterior Cramér-Rao bound (PCRB) minimization (m-
PCRB): At each time slot, the UAV trajectory is opti-
mized to minimize the sum of predicted PCRBs for state
variables of the next time slot, which can be expressed
as [8], [44]

min Tr(M,|x,=x,) st (18a).
dn

e 07, minimization (m-7,): At each time slot, the UAV
trajectory is optimized to minimize the approximated
measurement noise variance for azimuth angle 6,, of the
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Fig. 6. UAV trajectory comparisons between the PMD and PMnD case.

next time slot denoted by &in = Uin\xnﬂzn, which can
be expressed as
min 7, st (18a), (18b).
Adn ’
The sensing duration ratio w, is given by wm,x = 1 to
ensure the sensing performance as much as possible for all
benchmarks.

1) UAV trajectories: Fig. 6(a)-6(d) illustrate the UAV tra-
jectories obtained by the benchmarks and our proposed UAV
trajectory optimization scheme in both the PMD and PMnD
cases. The measurement capability coefficients are set as
a1 = as = 1 and a3 = ay = 0.1 for the PMD and PMnD
case, respectively. To fairly compare our proposed scheme and
benchmarks, the constraint (18b) with ymi, = 1 is also applied
in the m-&%n scheme and the specific position under the SFH
scheme is given by qr = [1,1]7. Other system parameters are
given by ¢ = 10~° and x¢ = [20,0,20,0]7. First, it can be
observed from both Fig. 6(a) and Fig. 6(b) that the UAV trajec-
tory obtained by our proposed AO-based algorithm (dentoed
by “Prop.” in Fig. 6(a)-6(d)) well match the results obtained
by the exhaustive search (denoted by “Ex.” in Fig. 6(a)-6(d)),
which validates the effectiveness of our proposed AO-based
algorithm. Second, in both the PMD and PMnD cases, the
UAV trajectory under the m-PCRB scheme is approximately
circular to maintain an optimal distance minimizing the PCRB,
while the UAV under the m-&in scheme approaches the
BS in the direction of 6,, = 90° and then hovers around
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[0,1]7, which is the optimal position for minimizing &% ,.
Different from the UAV trajectories under benchmarks, the
UAV under our proposed scheme tends to approach the BS
with a relatively smaller azimuth angle and then stay at the
straight line with %,, = ymin parallel to the BS ULA antennas
in both the PMD and PMnD cases. The reason for such
trajectory is that being at the line with ¢j,, = ym;, leads to wide
COR/beam coverage, which is consistent with our previous
observation from Fig. 4(a) and Fig. 4(b) and also demonstrates
the importance of beam coverage to signal reception reliability.
Consequently, the predicted UAV trajectory parallel to the BS
ULA antennas with 9, = Ymin is advantageous for outage
capacity maximization. In addition, the UAV trajectory with
cout = 107% is generally farther away from the BS than that
with €4y = 1072 in both the PMD and PMnD cases, indicating
that a larger UAV-BS distance is more beneficial for enhancing
the communication reliability.

2) Outage capacities: Fig. 7(a) and Fig. 7(b) compare the
outage capacities achieved by the benchmarks and our pro-
posed scheme in both cases. Particularly, the outage capacities
of benchmarks are calculated by our proposed algorithm for
(P3.1) given their optimized predicted UAV trajectories and the
OP threshold eoy = 1072 As illustrated in Fig. 7(a), the com-
munication performances under the SFH and m-&%,n scheme
exhibit large random variations similar as fast fadings in the
PMD case. The reason is that the UAV is improperly near the
BS and can be easily away from the COR/beam coverage due
to the position uncertainty. The outage capacity under the m-
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Fig. 7. Outage capacity comparsions among different schemes between the PMD and PMnD case.

PCRB scheme are relatively stable but limited by the high path
loss. Comparatively, the outage capacity under our proposed
scheme is much more stable than benchmarks and also higher
than benchmarks for over 0.2 bps/Hz, which validates the
effectiveness and superiorities of our proposed outage capacity
maximization scheme over benchmarks in the PMD case.
Nevertheless, Fig. 7(b) shows that such superiorities disappear
in the PMnD case because the small measurement MSE leads
to a low OP even if the UAV is close to the BS. Besides,
the outage capacity under our proposed scheme in the case
with o = 10~% is lower than that with e, = 102, which
shows the trade-off between the communication reliability and
efficiency.

VI. CONCLUSIONS

This paper studied the outage capacity maximization for
UAV tracking enabled by sensing-assisted predictive beam-
forming, where the UAV trajectory, sensing duration ratio,
and target constant received SNRs were jointly optimzied.
To facilitate the formulation of a tractable optimization prob-
lem, closed-form OP approximations were proposed based on
second-order Taylor expansions, which also characterized the
outage capacity. Then, two efficient algorithms were proposed
to address the non-convex approximated optimization prob-
lem: a search-based algorithm with ensured convergence and
an AO-based algorithm with lower complexity. Simulation
results verified the effectiveness of our proposed approx-
imations, algorithms, and the superiority of the proposed
joint UAV tracking and outage capacity maximization scheme
over benchmarks in the PMD case. Furthermore, our results
demonstrated that the optimal predicted UAV trajectory tended
to be parallel to the BS ULA antennas with a nonzero mini-
mum distance, achieving a trade-off between decreasing path
loss and increasing beam coverage area for outage capacity
maximization. The extension of our proposed approximations
to multi-static ISAC systems are worthwhile future works.

APPENDIX A
PROOF OF PROPOSITION 1

According to the EKF framework [34], the state vector
at each time slot can be approximately Gaussian distributed,

represented by x,_1 ~ N(Xp—1,M,,_1),Vn € {1,2,..., N}.
Thus, x, ~ N(X,,M,,) is derived from (3) and (9).
Furthermore, as a marginal distribution of the state vector
X,, the ground-truth UAV trajectory q, is also Gaussian
distributed given by q,, ~ N (dn, A,,) with

A AL, AL Mpnlir [Mpn ]
An N B Xy, p,n p,n]13 ) 45
A)%y,n A?,n |:[MP77L]31 [Mp,n]BS 43)

Therefore, §,, ~ N (0, f&n) holds and the approximated OP at
the prediction stage of the nth time slot (29) can be derived
from the integral of f(¢§,,) on the complementary set of the
aCOR (24), i.e.,

- 1,7U yU(in)
G R G =1 - / (/ f(Qn)dién)dfm (46)
Z Ui

EL L(En)
where £ and #y can be obtained from the equation
d#,,/dy, = 0. This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

For notational simplicity, we adopt x to represent either
the function X or ). Accordingly, v, Z, xu, XL, Ax.n, An T€p-
resents Yy, £n, XU, XL, Ax,n, Apn in the case where y denotes
X, and Ay, Tn XU, XL, Ax,n, Ay, in the case where x denotes X,
respectively. Then, an upperbound of the partial derivative of
X W.I.t. v can be derived as

ox )% 0Ys
LA =— 4 T+ 5,) == ) = Ap(y), 47
By = (87 (@ +2n) 52 p(v), @D
emxuM? c—x(?
with A = 2n maﬂ%’%}
V/2ldet(AL) | (Y1 +Y2 (2+%0)2) B
. dp _ _ (E2452)5P(p1v+po)
w.r.t. v can be derived as I = (A2 2 P

| are given by

. The derivative of p(v)

((IE where
the specific expressions of pg and p
po = 2570 PM (G5 (n + ) (27 + 2077)
+ I H)M + (25, + §,)°N) > 0,
pr =205 (L5 + 5)° ((£n + ) (&, — i) + 2, HY)M
+2(32 + 52)°N.. (49)

Next, two cases with p; > 0 and p; < 0 are discussed,

respectively. For the case with p; > 0, g—f; > 0 holds

due to v > 0. As for the case with p; < 0, dp

dy 1S a



monotonically nonincreasing function. Since both j—ghzo >0

and lim g—f; > ( can be obtained, g—f; > 0 also holds in this

Y—00
case. Thus, p(v) is a monotonically nondecreasing function of

~v. Finally, both p(0) < 0 and lim p(vy) = 0 can be obtained.
’Y‘)OO
As a result, g% < Ap(v) < 0 holds, completing the proof.
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