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Abstract—Distributed control has been widely applied in fields
such as energy and aviation sector, and with its advantage
of aggregating resources to form autonomous regions, it has
evolved into a critical control technology. However, its open com-
munication architecture exposes the distributed control system
to false data injection attacks (FDIA) through multiple paths,
including communication links, sensors, and controllers, leading
to potential system oscillations. Therefore, there is an urgent need
to detect cyber-attacks from multiple paths. To address this issue,
this paper first establishes a distributed control framework for
energy system, with modeling of three types of attack paths.
Consequently, a reconstruction-based method is presented to
identify FDIA through time-frequency masking autoencoders
(TFMAE) technology. Finally, the effectiveness of detection is
validated by the case studies in a simulated distributed control
system, demonstrating that the detector can detect dynamic FDIA
events across multiple attack paths and achieve over 95.2%
precision.

Index Terms—energy system, distributed control, FDIA, attack
paths, anomaly detection

I. INTRODUCTION

As a critical infrastructure in modern society, energy sys-
tem encompasses the entire process from energy production,
conversion, transmission, and distribution, to consumption [1].
Within the energy system, energy regulation primarily employs
centralized control and distributed control approaches. Tradi-
tional energy systems primarily rely on centralized control,
where a central dispatch center coordinates all decisions and
operations. This approach is well-suited for systems dominated
by thermal power generation [2]. With the development of
renewable energy and the emergence of smart energy system,
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traditional centralized control struggles to adapt to their decen-
tralized and uncertain nature. Distributed control, in contrast,
disperses control functions across individual energy resources
and devices. This enables each resource to make autonomous
decisions and perform control actions based on its local state
and information, while simultaneously coordinating with other
units. Consequently, distributed control has become an integral
component of modern energy system [3].

The stability of energy system relies on secure control [4].
A compromise in the control system can lead to system insta-
bility or even collapse, resulting in widespread blackouts, sig-
nificant economic losses, and threats to public safety. Control
systems are frequent targets for cyber-attacks. For instance,
beginning in March 2019, Venezuela experienced repeated
nationwide power outages, affecting most of the 23 states in
the country, and causing severe issues in healthcare, industrial,
and transportation services [5]. On December 23, 2015, the
power grid of two western regions in Ukraine was targeted by a
cyber-attack. Hackers used BlackEnergy3 malware to remotely
compromise the information systems of three Ukrainian energy
distribution companies, temporarily interrupting power supply
to consumers and leaving approximately 230,000 consumers
without electricity for 1 to 6 hours [6]. These incidents
highlight the importance of cyber security in energy control
systems.

Among various threats to control system, false data in-
jection attack (FDIA) is a typical form of cyber-attack that
manipulates energy system state through designed erroneous
data, thereby disrupting the control process [7]. Currently,
many researchers are dedicated to designing distributed control
methods to counter FDIA. A distributed pulse controller
targeting random FDIA has been proposed [8] to address the
mean-square bounded synchronization problem in multi-agent
systems under attack. An FDIA-resilient distributed controller
has been proposed [9], with its convergence in distributed
control system has been proven using the Laplace transform
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and final value theorem. [10] deploy and integrate a One-
class support vector machine-based anomaly detection device
in relays to accurately distinguish genuine fault data from
injected false data. A novel approach combining augmented
Mahalanobis distance with calibration strategies is introduced
[11] to enhance out-of-distribution detection performance for
text-data in power system applications. A distributed adaptive
compensator has been proposed [12] to enhance the H∞ con-
trol protocol and mitigate attacks on sensors and actuators. The
aforementioned control methods have achieved satisfactory
defensive effects.

However, the decentralized operation of distributed control
system causes abnormal information to be hidden in the local
data of individual energy resources, making it difficult to mon-
itor. In addition, compared to centralized control, distributed
control involves increased risk paths across resources [8] and
complex interaction behaviors [12]. These characteristics en-
able potential cyber-attack to gradually expand their influence
without being promptly detected, thereby weakening defensive
effectiveness [13]. Therefore, establishing a distributed control
anomaly detection mechanism to trigger defensive measures is
necessary.

This paper comprehensively considers FDIA attacks oc-
curring on communication links, sensors, and controllers in
distributed control system, applying a detector based on
Temporal-Frequency Masked Autoencoders [14] for FDIA
detection to perceive occurring attack behaviors.

II. MULTI-LOCATION FDIA TARGETING DISTRIBUTED
CONTROL ENERGY SYSTEM

Fig. 1. Regional autonomy with distributed control

A. Distributed Control for Energy System

As shown in Fig. 1, modern energy system incorporates nu-
merous flexible resources including solar power, wind power,
energy storage system, and demand-side loads. Distributed
control aggregates energy resources with similar character-
istics to form autonomous regions. Within each region, lo-
cal optimization of resource dispatch is achieved, thereby
maximizing control fairness. Subsequently, these autonomous
regions connect to the main grid to collaborate in achieving
supply-demand balance.

The physical state of each energy resource participating in
regulation (e.g., residential load) is obtained through data col-
lection from the sensor. Each resource exchanges information
with neighbors via a communication network. After collecting
information, energy resources transmit it to the controller,
which generates control signals through predefined distributed
control strategies and regulates physical devices via actuators.

Based on the aforementioned energy resource coordination
process, the following distributed control strategies were de-
signed to coordinate local information and ultimately achieve
global objectives:

γ̇i = si = −kγ
∑
j∈N

aij(γi − γj) + ci(γi − γref) (1)

where si represents the control input of the energy resource;
γi represents the power state of resource i; kγ indicates the
coupling gain; N represents all neighbors of i; aij is an
element of adjacency matrix based on the network topology,
where aij = 1 indicates i and j are directly connected by
a communication link, where aij = 0 indicates no commu-
nication link; γref is the reference signal; ci is the pinning
gain, where ci = 0 indicates that the node can’t receive the
reference signal, and ci = 1 indicates that the node receives
the reference signal.

For all the distributed resources in the same region, the
corresponding matrix from the control protocol (1) can be
shown as follows:

s = −kγ (L+ C) γ + kγγrefc (2)

where s = [s1, s2, . . . , sN ]
T denotes the series of control

input; L is the Laplacian matrix; C and c denote the pinning
matrix and pinning vector; γ = [γ1, γ2, . . . , γN ]

T denotes the
power states of all resources.

B. FDIA on Distributed Control Via Different Paths
In distributed control system, FDIA achieves its goal of dis-

rupting energy systems by injecting false data into distributed
resources. As shown in Fig. 2, the control process involves
multiple components, including communication links, sensor,
and controller. FDIA can target these components through
multiple attack paths, therefore it is necessary to model FDIA
for each attack path as a prerequisite for cyber-attack detection.

Attack on communication links: Typically involves inter-
cepting and tampering with information transmitted from
neighboring nodes, making it a relatively easy attack path to
implement. For nodes i and j, the FDIA for communication
link i− j can be modeled as:

γ̂j (t) = γj (t) + εij (t) (3)

where εij represents the injected value; γ̂j (t) represents the
tampered information received by resource i from resource j.

Attack on sensor: this path of FDIA is achieved by tam-
pering with measurement data. In this case, resources receive
incorrect information about their status, which affects control
decisions. This type of attack is modeled as follows:

γ̂i (t) = γi (t) + εii (t) (4)
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Fig. 2. Potential path for FDIA in energy resource

Fig. 3. The structure of TFMAE

where εii (t) represents the injected value in measurement
data; γi (t) is the original state of resource, while γ̂i (t)
indicates the tampered state of resource i to participate in the
control loop.

Attack on controller: this path of FDIA is achieved by
tampering with the control signal from controller to actuator,
misleading the control command directly. Under this type of
FDIA, the compromised control can be expressed as:

ŝi (t) = si (t) + εi (t) (5)

where si (t) is the original control input of resource i; εi (t)
is the inject value; ŝi (t) indicates the tampered control input
will be sent to the actuator.

III. METHODS FOR FDIA DETECTION

In the field of time series analysis, anomaly detection is
an important analytical tool that identifies abnormal parts of
a sequence by analyzing whether the time series conforms to
normal data distribution. In anomaly detection, reconstruction-
based methods restore the complete time series from current
inputs and detect anomalies by comparing the reconstructed
time series with the actual series. This method applies to
unsupervised learning using unlabeled training data and is
suitable for detecting cyber-attack events due to the signifi-
cant deviation from normal states when attacks occur. This
paper applies the Temporal-Frequency Masked Autoencoder
(TFMAE) [14] based on the reconstruction method to FDIA
detection in distributed control of energy system.

TFMAE combines time masking and frequency mask-
ing strategies, using an autoencoder to extract normal pat-
tern information from time series data. It identifies anoma-
lies by comparing the differences between time-masked and
frequency-masked representations. The overall structure of
TFMAE is shown in Fig. 3. TFMAE mainly consists of the
following three parts:

A. Temporal-Frequency Masking

For time domain masking, TFMAE employs variance coef-
ficient analysis based on sliding window statistics to calculate
data fluctuation characteristics within local time windows,
masking observation values at time points with the largest fluc-
tuation amplitudes. For frequency-domain masking, Fourier
transform amplitude spectrum analysis is used to identify
and mask frequency components with the weakest amplitudes.
The complete time-domain signal is reconstructed via inverse
Fourier transform, and the frequency domain embedding rep-
resentation of the entire sequence is output.

B. Transformer-based Autoencoder

In a transformer-based [15] autoencoder, encoders and
decoders have different functions depending on the input:
the encoder receives unmasked time observations as input
and learns the high-dimensional representation of the normal
pattern in the time series, while the decoder is used for
sequence reconstruction, including masked observations. In
summary, the position-encoded input sequence S first passes
through the self-attention layer, which can be expressed as:
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S̃ = softmax
(
QK⊤
√
dk

)
V (6)

where S̃ ∈ Rn×dv is the output sequence matrix; Q ∈
Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv are the query, key, and value
matrix, obtained from the input sequence S through linear
projection [15]; dk denotes the dimension of the key vector;
dv denotes the dimension of the value vector; softmax (·) is
the activation function.

To ensure the stability and performance of the model, the
attention mechanism undergoes the following transformation:

Ŝ = LN
(
S + S̃

)
(7)

Sout = LN
(
Ŝ + FFN

(
Ŝ
))

(8)

where each layer undergoes a residual connection; LN (·)
represents the layer normalization function; FFN (·) is a feed
forward network consisting of two connected linear layers. Ŝ
denotes the intermediate layer output obtained through residual
connection. Sout denotes the output sequence, where the
reconstructed sequence through the decoder for the frequency
domain is denoted as F ∈ Rn×D, and the reconstructed
sequence through the decoder for the time domain is denoted
as T ∈ Rn×D.

C. Model Training and Anomaly Detection

Based on the sequence outputs in the frequency domain and
time domain, the contrastive objective function of TFMAE is
calculated as follows:

Ω = DKL (F, T ) +DKL (T, F ) (9)

where DKL (·, ·) denotes the Kullback–Leibler divergence,
used to measure the difference between the time domain and
frequency domain representations. Similarly, for the observed
sequence ω (t), the reconstructed outputs in the frequency
domain and temporal domain are f and t, respectively, the
anomaly score calculation in anomaly detection is as follows:

Score (ω (t)) = DKL (f, t) +DKL (t, f) (10)

Finally, given the threshold λ, the sequence is determined
to be in an abnormal state based on the threshold, as shown
below:

ŷ =

{
1, Score (ω (t)) ≥ λ
0, Score (ω (t)) < λ

(11)

where ŷ = 1 indicates that the observed sequence is abnormal,
and ŷ = 0 indicates that the observed sequence is normal.

IV. CASE STUDY

This study simulated a distributed control system compris-
ing eight energy resources, as shown in Fig. 5, to evaluate
TFMAE’s capability in detecting FDIA events. According to
previous research [14], [16], for data contextual anomalies
caused by abnormal events, detecting anomalies achieves the
purpose of perceiving events, because in reality people are

Fig. 4. The topology of test distributed system

more concerned with detecting events than anomalies at every
moment.

For this simulation, 2400 data points were utilized as
training data. The test set consists of three parts, each contain-
ing 300 data points, including normal and abnormal points,
obtained from three different paths of dynamic FDIA event
simulations. Based on the four cases mentioned above, the
case study selects the same time period (t=0 to t=300) for
comparison, as shown below:

Case 1: Normal operation without any FDIA events. In this
case, all resources transition from a power state of 0.4 at t=0
to a regulated state with a target of 0.6. Under cyber-attack-
free condition, the energy system can smoothly regulate its
internal state to achieve precise regulation as shown in Fig. 5.

Fig. 5. Performance of distributed control without FDIA

Case 2: Anomaly operation under communication link at-
tack. In this case, a 30-second communication attack from
resource 4 to resource 0 is introduced at t=50, which can be
expressed as:

ε04 (t) = 0.2 cos (t) (12)

Case 3: Anomaly operation under sensor attack. In this
case, a 30-second sensor attack to the sensor of resource 0
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Fig. 6. Performance of control system and detector under communication
attack

is introduced at t=50, which can be expressed as:

ε00 (t) = 0.2 cos (t) (13)

Fig. 7. Performance of control system and detector under sensor attack

Case 4: Anomaly operation under controller attack. In this
case, a 30-second controller attack from controller to actuator
of resource 0 is introduced at t=50, which can be expressed
as:

ε0 (t) = 0.2 cos (t) (14)

As shown in Fig. 6 to 8, dynamic attacks on resources
trigger regulatory oscillations, causing the system to deviate
from the convergence process. Among these, attacks on the
controller cause the greatest degree of system oscillation,
attacks on sensors cause the second greatest impact, and
attacks on communication links cause the least impact.

Precision refers to the proportion of actual positive samples
among the samples predicted as positive. Recall refers to
the proportion of actual positive samples among the samples

Fig. 8. Performance of control system and detector under controller attack

TABLE I
PERFORMANCE OF FDIA DETECTION IN CASES

Test Set Metric
Precision Recall F1-score

Case2 0.952 1.000 0.976
Case3 0.976 1.000 0.988
Case4 0.985 1.000 0.992

predicted as positive, relative to the total number of positive
samples in the dataset. The F1-score is the weighted average
of precision and recall. As shown in Table 1, the recall
indicates that TFMAE can detect attack events in all three
cases. Additionally, the accuracy exceeds 95.2% for all three
types of attacks, indicating that the detection model has a low
false positive rate.

V. CONCLUSIONS

Cyber threats, especially FDIA, severely impact the con-
trol efficiency of distributed energy control systems and are
urgent risk factors that need to be addressed. To address this
challenge, we first analyzed the three attack paths of FDIA on
energy resources and applied an anomaly detection framework
based on TFMAE to detect FDIA. Simulation studies of
dynamic attacks demonstrated that the detector achieved over
95.2% accuracy and 100% recall rate across all attack paths in
the cases, with an F1 score exceeding 97.5%, confirming its
ability to detect attack events while minimizing false positives.
Additionally, the study found that controller attacks cause
the most severe system oscillations, followed by sensor and
communication link attacks, highlighting the need for path-
specific protection mechanisms.
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