
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apen

Credible demand response capacity evaluation for building HVAC systems 

based on grey-box models

Siyu Jiang 

a  , b, c 

iD , Hongxun Hui 

a, b, c,∗ 

iD , Yonghua Song 

a, b , c

a State Key Laboratory of Internet of Things for Smart City, University of Macau, Macao, 999078, China 

b Department of Electrical and Computer Engineering, University of Macau, Macao, 999078, China 

c University of Macau Advanced Research Institute in Hengqin, Guangdong, 519031, China

H I G H L I G H T S
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A B S T R A C T

Demand response (DR) has been promising in recent years for maintaining the balance between power supply and 

demand in the power system. Evaluating the DR capacity is significant for the stable operation of the power system 

and for improving end-user participation. Heating, ventilation, and air conditioning (HVAC) systems account for 

about 40 % of the total power demand and have enormous potential. However, the power consumption of HVAC 

systems is subject to various uncertainties, making it difficult to evaluate the range of their DR capacity credibly. 

To solve this issue, this paper proposes a credible DR capacity evaluation framework based on grey-box models. 

This framework utilizes a probabilistic model to estimate HVAC consumption baseline intervals and leverages an 

adaptive equivalent thermal parameter model to derive credible DR capacity intervals. The intervals can reflect 

the non-linear relationship between multiple uncertainties and the DR capacity. A probabilistic model is proposed 

by combining a temporal convolutional network and ensemble conformalized quantile regression to estimate the 

baseline intervals. Additionally, an adaptive equivalent thermal parameter model is adapted to quantify the DR 

capacity under different regulation levels and different confidence levels. Finally, the effectiveness of the proposed 

framework in evaluating credible DR capacity is verified using realistic scenarios in Macao.

1. Introduction

The rapid growth of renewable energy sources, characterized by their 

inherent intermittency and stochasticity, has aggravated the imbalance 

between power supply and demand within power system [1]. Demand 

response (DR) guides end-users to change consumption patterns through 

electricity tariffs or incentive policies to relieve the imbalance [2]. DR 

offers faster ramp speeds and lower costs through widespread Internet 

of Things technologies, capturing significant attention in many countries 

[3]. In America, PJM claims that the 8451 MW DR capacity can be pro-

vided by approximately 2 million commercial and industrial customers

[4]. Electric Reliability Council of Texas claims load resources with an 

aggregate capacity of approximately 8700 MW [5].

Building consumption approximately accounts for one-third of the 

global energy consumption [6]. Under net-zero emissions scenario, the 

building DR capacity can reach 259 GW [7]. Meanwhile, heating, ven-

tilation, and air conditioning (HVAC) systems constitute approximately 

40 % of the total energy usage in buildings by 2050 [8], which im-

plies HVAC systems in buildings have substantial DR capacity. Although 

building users possess significant DR capacity, they prioritize meeting 

comfort requirements when participating in DR events. On the one hand,
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the DR organizers impose penalties on users whose actual DR capacity 

deviates significantly from the reported capacity. For example, PJM pe-

nalizes registrations whose deviations between real response capacity 

and day-ahead reported capacity are greater than 20 % [9]. In China, 

users whose deviation exceeds 20 % forfeit their incentive revenue [10]. 

On the other hand, the grid operators depend on accurate and credible 

quantification of building flexibility to develop demand response pro-

grams, such as peak load management [11]. Therefore, the accurate and 

credible evaluation of DR capacity before the event is crucial to ensure 

users can fully maximize their benefits.

DR capacity evaluation refers to quantifying a user’s ability to ad-

just their electricity consumption during a DR event, typically through

changes in device usage or shifting energy consumption to different 

time periods. This concept encompasses four primary capacity types: 

theoretical capacity, which evaluates the hourly capacity based on user 

availability, controllability, and storability; technical capacity, which ac-

counts for appliance and operational constraints to refine the theoretical 

capacity; economic capacity, which considers investment and opera-

tional costs; and practical capacity, which evaluates the actual capacity 

based on user willingness and building characteristics in real DR events 

[12]. While these categories provide a useful framework for assessment, 

their evaluation is complicated by several inherent uncertainties, such as 

variable weather conditions, unpredictable occupant behavior, and fluc-

tuating building operational parameters. These uncertainties often lead 

to inaccurate evaluation outcomes, which may result in severe penal-

ties for users and undermine both their trust and the efficiency of the 

overall DR program. Therefore, developing a credible demand response 

capacity (CDRC) evaluation methodology that accounts for these uncer-

tainties is crucial for enabling building users to participate effectively in 

DR events. Currently, the predominant evaluation approaches are gen-

erally classified into three categories: white-box models (physics-based 

models), black-box models (data-driven models), and grey-box models 

(physical data-driven fusion models).

White-box models: White-box models are built on established phys-

ical principles and implemented through simulation software or mathe-

matical equations [13,14]. Tang et al. [15] design an optimized dispatch 

strategy for building DR capacity based on real-time TRNSYS-MATLAB 

simulation. Song et al. [16] leverage the mathematical high dimensional 

representative model by identifying different air conditioner parameters 

to evaluate the capacity. Jung et al. [17] propose an agent-based mod-

eling framework, coupled with EnergyPlus simulations to quantify the 

capacity while considering the personal comfort. Ran et al. [18] develop 

a virtual flow-meter model, enabling a fast DR strategy for the HVAC sys-

tem. Although the white-box models can display the concrete process 

with clear interpretability, they usually obtain every specific parameter 

with less transferability for each user.

Black-box models: With the smart sensors being applied widely [19], 

data can be obtained more easily to evaluate DR capacity for users. 

Black-box models aim to convey the uncertainty from observed historical 

data based on data-driven methods, such as neural networks or regres-

sion methods under different scenarios. In recent research, black-box 

models evaluate the DR capacity by predicting customer baseline based 

on data-driven methods. From the perspective of model generalization, 

Siddiquee et al. [20] and Yu et al. [21] utilize the unsupervised cluster-

ing technique K-means to estimate the different customer DR capacities. 

From the perspective of accuracy, Harikrishnan et al. [22] develop a het-

erogeneous ensemble learning method based on XGBoost-ANN to predict 

residential customer load consumption, which is beneficial for the up-

per utility to deploy the DR events. Liang et al. [23] design a data-driven 

method for the HVAC systems participating in incentive-based DR. Zhu 

et al. [24] construct a multi-layer perceptron layer to quantify DR capac-

ity rapidly and accurately. From the perspective of user comfort, Amer 

et al. [25] develop a deep reinforcement learning method for home 

energy management systems to obtain DR capacity while considering 

user comfort. Zhang et al. [26] propose probability of comfort variation

as a user comfort metric for residential buildings integrated with heat 

pump clusters, which is adopted to quantify DR capacity under different 

control strategies. Although the aforementioned black-box models have 

better predictive performance and can be used in different scenarios, 

when we need to obtain specific CDRC, we still need some interpretable 

process parameters to enhance physics-informed interpretability.

Grey-box models: Grey-box models are simplified physics-based 

models by integrating physical principles and observed data, such as 

equivalent thermal parameter (ETP) model [14]. Hui et al. [27] propose 

an evaluation method for the aggregated air conditioner capacity based 

on the ETP model. Considering the customer sensitivity to price, Kong 

et al. [28] develop a peak shaving response model based on customer 

psychology mechanism. Furthermore, Song et al. [29] utilize LSTM to 

predict the HVAC status as the input of ETP model, then introduce the 

social psychology to obtain theoretical DR capacity. Han et al. [30] eval-

uate the building DR capacity based on a physical-data fusion method. 

The physical parameters can be modified by the LSTM model to ob-

tain the capacity. Although present grey-box models can inherit the 

model interpretability of white-box models and better predictive per-

formance of black-box models, the DR capacity evaluation results are 

still deterministic and incredible.

Both meteorological and user behavior uncertainties contribute to 

fluctuations in user energy consumption, leading to highly uncertain DR 

capacity. This situation complicates credible deterministic evaluation. 

While previous studies have attempted to enhance the accuracy of de-

terministic DR capacity evaluations, this capacity is usually represented 

as a single-point expected value, which fails to capture the various un-

certainties inherent in user energy consumption. Furthermore, since 

deterministic evaluation yields a single-point expected value, it does 

not account for potential errors. When grid operators make scheduling 

decisions based on these point evaluations, they can face two possi-

ble outcomes: if the evaluation is overly optimistic, it may compromise 

power system stability, whereas an overly conservative evaluation might 

result in suboptimal economic performance. In contrast, interval eval-

uation provides DR capacity estimates as an interval range, effectively 

quantifying the uncertainty of DR capacity. This approach offers criti-

cal, reliable, and comprehensive information to support power system 

planning, operational control, market transactions, and energy storage 

configuration and management.

Based on the aforementioned analysis, this paper acknowledges 

the challenge of performing a CDRC evaluation based on probability, 

which accounts for multiple uncertainties in meeting market require-

ments. To address this issue, this paper proposes a CDRC evaluation 

framework. This framework utilizes a probabilistic model to estimate 

HVAC consumption baseline intervals and leverages an adaptive equiv-

alent thermal parameter model to derive CDRC probabilistic intervals. 

In comparison with other studies, this paper provides the following 

contributions:

1. We propose a CDRC framework to evaluate the day-ahead build-

ing credible demand response capacity. Notably, the definition of 

CDRC is represented as an interval under a specific confidence 

level, rather than as a determined point. The interval reflects the 

non-linear relationship between multi-uncertainties and response 

capacity.

2. An HVAC consumption baseline probabilistic estimation model

is proposed. The model utilizes the temporal convolutional net-

work to capture the multi-uncertainties. Then, it combines en-

semble conformalized quantile regression to capture the HVAC 

energy consumption autocorrelation and heteroscedasticity. The 

proposed model can determine the HVAC system’s variabilities 

in increasing consumption or decreasing consumption at different 

times and yield informative valid prediction intervals.

3. An adaptive equivalent thermal parameter model is adopted to

quantify the DR capacity under different regulation levels at
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different confidence levels. The adaptive model can generate the 

upper and lower bounds of DR capacity, taking into account 

multi-uncertainties transmitted by the baseline.

The remainder of this paper is organized as follows. Section 2 

presents the credible DR capacity framework for building HVAC sys-

tems and the adaptive equivalent thermal model. Section 3 formulates 

the proposed probabilistic baseline estimation model. Section 4 con-

ducts case studies. Section 5 concludes this paper. Section 6 discusses 

the future work directions.

2. Credible demand response capacity evaluation framework for 

building HVAC systems

2.1. Evaluation framework for building HVAC systems

The evaluation framework of CDRC is shown in Fig. 1. Buildings 

are provided with power by transmission lines to meet users’ cooling 

demands. When renewable energy sources’ intermittent output or sud-

den load disturbances induce power system imbalance, the distribution 

system operations detect the threat and announce the aggregator to pre-

pare for the DR events. The aggregator transmits a DR signal to building 

users. If the building users choose to participate, they need to report their 

willingness signal, mainly the CDRC, to the aggregator. Rapid deploy-

ment of smart sensors allows buildings to gather abundant local building 

operation data, occupancy flow data, and real-time environmental data. 

These data enable local building users to evaluate the CDRC of HVAC 

systems. In detail, the local building user will evaluate the HVAC sys-

tem’s CDRC range, including the minimum capacity and the maximum 

capacity that can be provided to the power system during the DR 

events.

When the DR events start, the HVAC systems of buildings will change 

their operational power consumption. The difference between the ad-

justed operational power and baseline power is the realistic DR capacity

provided to the power system. However, there are two main challenges:

(i) On the one hand, the baseline power is influenced by chaotic

multi-uncertainties, such as occupancy flow, weather conditions, 

temporal variability, etc. So we utilize a black-box model to esti-

mate the probabilistic credible baseline power considering these 

uncertainties, which is presented in Section 3.

(ii) On the other hand, the upregulation or downregulation power

is the mapping from temperature settings, which is limited by 

the users’ desired comfort level. The mapping relationship in 

the overall heat transfer process is influenced by the operational 

parameters of HVAC systems and the characteristic parame-

ters of buildings, which cannot be measured by smart sensors. 

According to research conducted by the American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers [16,27], 

users’ comfort levels differ due to occupancy flow, weather con-

ditions, and temporal variability. Hence, we set different tem-

perature settings according to occupancy flow and ambient tem-

perature. Then an adaptive ETP model based on probabilistic 

credible baseline power is designed in Section 2.2 so that the 

downregulation or upregulation power can be obtained.

2.2. Adaptive equivalent thermal parameter model for HVAC systems

The classical equivalent thermal parameter (ETP) model for HVAC 

systems installed in buildings can be described as follows [16]:

𝐶 in
𝜕𝜃 in 

(𝑡)
𝜕𝑡 = 

𝜃 out(𝑡)−𝜃 in 

(𝑡)
𝑅 in

− 𝑄 HVAC 

(𝑡), 𝑡 ∈  , (1)

where 𝐶 in 

denotes the indoor thermal capacity; 𝑅 in 

denotes the indoor 

thermal resistance; 𝜃in 

 

(𝑡) and 𝜃 out 

(𝑡) denote the indoor and outdoor tem

perature at time t, respectively; 𝑄HV AC 

(𝑡) denotes the HVAC systems

cooling capacity.

-

The transfer process from the cooling capacity of HVAC systems to 

power consumption can be presented as:

𝑃 (𝑡) = 

𝑄 HVAC(𝑡)
𝜂 , 𝑡 ∈  , (2)

where 𝑃 (𝑡) is the HVAC systems consumption at time t; 𝜂 is the transfer 

efficiency of HVAC systems. When 𝜂 is larger, the power consumption is 

lower for the same 𝑄 HVAC 

(𝑡).
When the HVAC systems are at stable status, the 𝜃in will reach 

the initial setting temperature 𝜃 set 

(𝑡 0 

). Accordingly, the indoor thermal 

resistance can be derived from Eqs. (1) and (2) as:

𝑅 in,𝛼 = 

𝜃 out 

(𝑡 0 

) − 𝜃 set(𝑡 0)
𝜂𝑃 (𝑡 0 

)
, 𝑡 0 

∈  , (3)

where 𝑃 (𝑡 0 

) can be replaced by baseline lower bound (BLB) or baseline 

upper bound (BUB) under the given confidence level 𝛼. BLB and BUB can 

be obtained from the credible probabilistic baseline estimation model in 

Section 3.

2.3. CDRC of building HVAC systems

Definition: CDRC can be defined as the guaranteed response capacity 

at arbitrary time t under a specific confidence level. The guaranteed 

capacity is not less than the minimum CDRC min  

 

, and not larger than,𝛼  

the maximum CDRC max under,𝛼  the given confidence level 𝛼. 

CDRC max ,,𝛼  and CDRCmin can,𝛼  be calculated by BLB and BUB under 

the given confidence level 𝛼 based on the adaptive ETP model. When 

estimating BLB and BUB, we take weather conditions, occupancy flow, 

and temporal variability into consideration, so the corresponding CDRC 

result contains uncertainties. Additionally, we can obtain CDRC under 

different confidence intervals.

When building users agree to participate in DR events, they should 

change 𝜃 set 

(𝑡 0             

 

) to 𝜃set(𝑡1 

) during the response period, at the same time,

the comfortable level should be maintained. We set Δ𝜃 as the tempera-

ture deviation range according to [16,27]. If the temperature is in the

range of [𝜃 set 

(𝑡 0 

)−Δ𝜃, 𝜃 set 

(𝑡0  

)+Δ𝜃], we can assume the temperature meets

user comfort requirements. And the power consumption with the reset 

temperature 𝜃se t 

(𝑡1  

) is:

𝑃 (𝑡 1,𝛼) = 

𝜃 out 

(𝑡 1 

) − 𝜃 set(𝑡 1)
𝜂𝑅 in,𝛼

, 𝑡 1 ∈  , (4)

𝑃 (𝑡 1,𝛼) = 

𝜃 out 

(𝑡 1 

) − 𝜃 set(𝑡 1)
𝜂𝑅 in,𝛼

, 𝑡 1 ∈  , (5)

where 𝑃 (𝑡 1,𝛼 

) represents adjusted operation power upper bound under

confidence level 𝛼; 𝑃 (𝑡1 ,𝛼) represents adjusted operation power lower

bound under confidence level 𝛼.
Then, the CDRC can be calculated as follows:

𝐶𝐷𝑅𝐶 max,𝛼 = 

|

|

𝑃 (𝑡 0,𝛼 

) − 𝑃 (𝑡 1,𝛼) 

|

| 

= 𝑃 (𝑡 0,𝛼 

)
|

|

|

|

|

(

1 − 

𝜃 out(𝑡 1 

) − 𝜃 set 

(𝑡 1 

)
𝜃 out(𝑡 0 

) − 𝜃 set 

(𝑡 0 

)

)

|

|

|

|

|

, 𝑡 0 ∈  , 𝑡 1 ∈  , 𝑡 0 ≠ 𝑡 1 

,

(6)

𝐶𝐷𝑅𝐶 min,𝛼 = |

|

|

𝑃 (𝑡 0,𝛼 

) − 𝑃 (𝑡 1,𝛼) 

|

|

|

= 𝑃 (𝑡 0,𝛼 

)
|

|

|

|

|

(

1 − 

𝜃 out(𝑡 1 

) − 𝜃 set 

(𝑡 1 

)
𝜃 out(𝑡 0 

) − 𝜃 set 

(𝑡 0 

)

)

|

|

|

|

|

, 𝑡 0 ∈  , 𝑡 1 ∈  , 𝑡 0 ≠ 𝑡 1 

,

(7) 

where 𝑃 (𝑡 0 𝑃 

 

) and (𝑡1 ) 

 

represent BUB power before and after adjusting,𝛼 ,𝛼
the setting temperature, respectively; 𝑃 (𝑡 0,𝛼 

) and 𝑃 (𝑡 1,𝛼 

) represent BLB

power before and after adjusting the setting temperature, respectively.

In summary, when a confidence level 𝛼 is specified, the baseline in-

terval is constructed based on a probabilistic model (i.e., the proposed
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Fig. 1. The framework of CDRC evaluation.

method in this paper), where the interval is defined by the BUB and

BLB. Then, the BUB power 𝑃 (𝑡 0,𝛼 

) and BLB power 𝑃 (𝑡 0 are,𝛼 

)  used as

inputs for the adaptive ETP model to evaluate user response effective

ness. Specifically, taking the upregulation scenario as an example, when 

the HVAC’s setting temperature is increased from 𝜃se t(𝑡0  

) to 𝜃se t 

(𝑡1  

), its

operating power will decrease correspondingly from 𝑃 (𝑡 0,𝛼      

 

) to 𝑃 (𝑡1,𝛼 

)
for BUB, and from 𝑃 (𝑡0 ,𝛼) to 𝑃 1  

(𝑡
 

) for BLB, respectively. As shown in,𝛼

-

Fig. 1, the difference of BUB between 𝑃 (𝑡0 and,𝛼)  𝑃 (𝑡1 ,𝛼)  

  

defines the max

imum value of the CDRC at confidence level 𝛼, denoted as 𝐶𝐷𝑅𝐶max .,𝛼  

 

Similarly, the difference of BLB between 𝑃 (𝑡 0,𝛼 

) and 𝑃 (𝑡1 ,𝛼 

) defines the

minimum value of CDRC at confidence level 𝛼, denoted as 𝐶𝐷𝑅𝐶min ,𝛼 

.

-

The thermal dynamics of HVAC systems are predominantly governed 

by the interplay between thermal resistance and thermal capacitance 

[31]. Thermal resistance dictates the rate of heat dissipation during 

transfer, while thermal capacitance determines the extent of indoor 

temperature variation as the system absorbs or releases heat. These prop-

erties are inherently reflected in the temperature dynamics driven by 

load fluctuations, where load variations effectively act as a dynamic rep-

resentation of changes in thermal resistance and capacitance. As a result, 

their primary effects can be captured through load responses without the 

need for explicit modeling of their variations. This approach not only re-

duces model complexity but also ensures simulation accuracy, enabling 

more efficient applications in reliable capacity evaluation.

3. Credible probabilistic baseline estimation model

The power consumption of HVAC systems is influenced by both 

multi-time-scale historical data and external environmental factors, 

including weather variations, occupancy flow uncertainties, and tem-

poral fluctuations. The complexity of these data leads to non-linear, 

non-stationary, and heteroscedastic relationships in the input-output 

mapping, while the analysis of multi-source, and heterogeneous data 

poses significant challenges. To address this issue, this section presents 

a model that combines a temporal convolutional network and a con-

formalized quantile regression model with the ensemble strategy to 

quantify uncertainties by obtaining confidence intervals. The model in-

tegrates temporal convolutional network for time series estimation and 

ensemble conformalized quantile regression to provide adaptive and 

valid intervals without requiring the data to be i.i.d. It assesses the

confidence of predictions by calculating the conformity between a new 

predicted value and existing data, then constructs an interval that en-

sures the true value is contained within it at a specified confidence 

level.

3.1. Temporal convolutional network

Temporal Convolutional Network (TCN) is an effective model for 

time series estimation problems [32]. TCN consists of causal convolu-

tion, dilated convolution, and residual connections, as depicted in Fig. 2. 

Causal convolution addresses the data leakage issue inherent in tradi-

tional one-dimensional convolutions. Dilated convolutions expand the 

receptive field without altering the size of the output features, enabling 

TCN to capture dependencies at greater distances. The convolutional 

structure provides TCN with the advantage of parallel computation 

compared to long short-term memory (LSTM) architectures. Residual 

connections help TCN maintain long-term dependencies in time series 

data and enhance model learning capabilities by considering cross-layer 

information transfer. It should be noted that while the input sequence 

length of TCN can be arbitrary, the length of each convolutional layer 

must be strictly consistent with the length of the input layer.

Given an input series data to predict the corresponding outcome, only 

using observations made prior to that time t, a sequential model network 

usually refers to a function that produces the following mappings:

�̂� 0 

,… , �̂� 𝑡 = 𝑓 

( 

𝑥 0 

,… , 𝑥 𝑡 

) 

, 𝑥 ∈  , 𝑦 ∈  , (8)

where 𝑓 denotes the TCN structure; �̂� is the output of TCN; 𝑥 is the input 

series data.

In Fig. 2, the dilated convolutions at position 𝑡 can be expressed as:

 con 

(𝑥 𝑡 

) =
𝐾−1
∑

𝑘=0
𝑓 𝑘𝑥 𝑡−𝑑𝑘 

, 𝑥 𝑡 

∈  , (9)

where 𝑓 𝑘 

is the filter also named convolution kernel, which can represent

the information decay rate; d represents the dilation rate, which widens 

the receptive field; 𝑥 𝑡−𝑑𝑘 

represents dk series before 𝑥 𝑡 

.

The receptive field depends on the depth of TCN and it can be 

depicted as:
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Fig. 2. The diagram of TCN structure: (a) The diagram of TCN with three layers; (b) The residual block structure of the first layer in TCN.

𝑅 fie 

= 1 + 2 ⋅ (𝐾 𝑖 

) ⋅ 𝑖 ⋅
2
∑ 

𝑖=0
𝑑 𝑖, (10)

where d𝑖 is equal to 𝑎 

𝑖 ; i is the layer number of the present layer; a is the 

dilation rate; 𝐾 is𝑖  the kernel size of the filter in 𝑖 -th layer; especially, 

the number of the input layer is 0.

When i is larger than 1, the kernel size can capture the features of 

𝑥∕𝑑, rather than the total input data. Kernel size keeps the time series 

data characteristics without increasing computational complexity.

In Eq. (10), we can see that the receptive field is determined by the 

depth of TCN, the dilation rate, and the kernel size. As the value of i 

increases, the disappearing gradients problem becomes more severe. To 

address this issue, a residual block is used, as shown in Fig. 2. The input 

data adds to the residual output and then becomes the input for the next 

layer. Notably, the output layer in Fig. 2 represents the output of the 

TCN structure rather than the estimation result. It will be the input to 

the fully connected layer behind it.

3.2. Conformalized quantile regression

Conformalized Quantile Regression (CQR) [33] combines proba-

bilistic estimation methods: conformal prediction (CP) and quantile 

regression (QR) to obtain prediction intervals (PIs). PIs provide the fu-

ture point 𝑥 𝑖 

with an acceptable range of values consisting of lower 

bound and upper bound under an explicit confidence level 𝛼. under a 

specific confidence level, CP creates valid PIs which can be expressed 

as:

�̂� 𝛼,CP
( 

𝑥 𝑖 

) 

= 

[ 

�̂� 

( 

𝑥𝑖 

) 

− 𝑄 (1−𝛼)
(

,cal
) 

,

�̂�
(

𝑥𝑖
) 

+ 𝑄 (1−𝛼)
(

,cal
)] 

, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  test 

, (11)

 = 

 

𝑟 𝑖 

∣ 𝑟 𝑖 = 

|

|

𝑦 𝑖 − �̂�(𝑥 𝑖)|| , (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  cal 

, (12)
{ }

where cal and  represent the calibration set
(

 and the
)

 residual set, re

spectively; �̂�(𝑥 ) is the estimation value; 𝑄( 1− ) 

,
 

𝑖 𝛼  cal is the (1 − 𝛼) -th

quantile value of residual set; 𝑥 in𝑖  test set  test 

can be regarded as the

future input data.

-

However, PIs generated by CP are almost fixed and CP assumes 

that the input data is independent and identically distributed (i.i.d.), 

which makes it unsuitable for autocorrelated and heteroscedastic HVAC 

systems’ consumption.

In contrast, QR yields varying PIs due to the different input points 

as Eq. (13) shows. Therefore, QR can capture features of seasonal and 

heteroscedastic HVAC baseline.

�̂� 𝛼,QR(𝑥 𝑖 

) = 

[ 

𝑞  𝛼(𝑥 𝑖 

), 𝑞  𝛼(𝑥 𝑖) 

]

, (13)

where 𝛼 is 𝛼∕2, 𝛼 is 1 − 𝛼; 𝑞𝛼 and 𝑞 are𝛼  

 

the empirical conditional

distribution functions of 𝛼 and 𝛼, respectively.

However, the finite sample points cause the actual PIs to have a sig-

nificant bias from the presumed confidence level, making the intervals 

invalid. CQR incorporates the advantages of CP and QR to construct 

valid and adaptive PIs. Specifically, CP yields valid PIs, which are 

constructed using the conditional mean estimates of the response vari-

able. QR generates the adaptive PIs according to the input data. The 

expression of CQR PIs is as follows:

�̂� 𝛼,CQR(𝑥 𝑖 

) = 

[ 

𝑞  𝛼
( 

𝑥𝑖 

) 

− 𝑄 (1−𝛼)
(

 ,cal
) 

,

𝑞  𝛼
( 

𝑥𝑖 

) 

+ 𝑄 (1−𝛼)
(

 ,cal
)] 

, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  test 

, (14)

 = 

{ 

𝑠 𝑖|𝑠 𝑖 

= max 

( 

𝑞  𝛼 

(𝑥 𝑖) − 𝑦 𝑖, 𝑦 𝑖 

− 𝑞  𝛼(𝑥 𝑖 

) 

)}

, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  cal 

, (15)

where  is the residual set improved from QR; 𝑄 (1−𝛼) is the (1  

 

− 𝛼) -th 

quantile value of set .
The empirical conditional distribution functions for 𝑞  𝛼 

(𝑥) can be cal-

culated by minimizing the pinball loss, which is the loss function for 

TCN in the Section 3.3:

𝑞  𝛼(𝑥) = 𝑓 

( 

𝑥, ̂ 𝜃 𝛼 

) 

, (16)

̂ 𝜃 𝛼 = arg min
𝜃

∑

𝑥 𝑖 

∈ train

𝐿𝑜𝑠𝑠 𝛼,pin 

(𝑥 𝑖 

), (17)

𝐿𝑜𝑠𝑠 𝛼,pin 

(𝑥 𝑖 

) = 

{

(1 − 𝛼) ⋅ 

( 

𝑞  𝛼
( 

𝑥 𝑖 

) 

− 𝑦 𝑖 

) 

, 𝑞  𝛼
( 

𝑥𝑖 

) 

≥ 𝑦 𝑖

(−𝛼) ⋅ 

( 

𝑞  𝛼
(

𝑥𝑖
) 

− 𝑦 𝑖 

) 

, 𝑞  𝛼 

( 

𝑥𝑖 

) 

< 𝑦 𝑖
, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  train,

(18)

where 𝑓 is the regression function based on quantile regression; 𝐿𝑜𝑠𝑠 𝛼,pin 

is the total pinball loss under confidence level 𝛼 for (𝑥 

 

, 𝑦 

 

) ∈ tr ain 

.𝑖 𝑖

3.3. Conformalized ensemble temporal convolutional quantile regression 

network

Although CQR can produce more valid PIs than QR, it still requires 

the input data to meet the i.i.d. assumption. Ensemble conformal-

ized quantile regression (ECQR) [34] adapts the assumption, which 

assumes that the error of time series is stationary and mixing. Under 

this assumption, the HVAC energy consumption is i.i.d. ECQR heritages 

the advantage of homogeneous ensemble learning strategy, it yields E 

subsets to fit different subset learners. In detail, ECQR yields aggre-

gated quantile results with upper bound and lower bound of PIs. The 

aggregated PIs yielded from ensemble learners are conformalized as 

follows:
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Algorithm 1: Conformalized ensemble temporal convolutional 

quantile regression network (CETCQRN).

Input: 

Dataset D = {(𝑥 1 

, 𝑦 1 

), (𝑥 2 

, 𝑦 2 

),… , (𝑥 𝑛 

, 𝑦 𝑛 

)};TCN initial

hyperparameters range; Confidence level 𝛼, 𝛼 ∈ (0, 1);Ensemble

number E; Sequence length s

Output: The HVAC systems Consumption BLB 𝑃 (𝑡0 ,,𝛼)  BUB

𝑃 (𝑡0 ,𝛼 

).
1 Split data set D into  train 

, v al 

and  test 

;

2 Calculate length of ensemble subset : 𝐿𝑒𝑛( sub 

) = 𝐿𝑒𝑛(tr ain)∕𝐸;
3 for 𝑒 = 1, … , 𝐸 do

4
𝐿𝑒𝑛( ain ⋅

Split subset  tr ) 𝑒 

 train,𝑒 

= { train} ;𝐿𝑒𝑛(tr ain)⋅(𝑒−1) 

5 Train subset TCN estimator with  train,𝑒 and obtain best

regression model with  val,𝑒 

;

6 if 𝐿𝑜𝑠𝑠 pin  

 

(𝑥 does 

 

) not change𝛼, 𝑖   in eval process within latest 10

epoch then

7 Stop the training process and update hyperparameters for 

TCN;

8 else

9 Reach maximum epoch then stop; 

10 end 

11 Compute PIs utilizing updated quantile TCN subset estimator

as in Eq. (13);

12 end

13 Set  = {},  = {}; 

14 for (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  train do 

15 for 𝑒 = 1, … , 𝐸 do

16  agg,𝑒 = ∁  

 

train train ;,𝑒  

17 Compute PIs for  with𝑎𝑔𝑔,𝑒  subset estimator trained by

subset  𝑡𝑟𝑎𝑖𝑛,𝑒

18 Compute  ,  as in Eqs. (20) and (21); 

19 end 

20 end 

21 Calculate mean value of [𝑞  

𝑒 (𝛼 𝑥 𝑒
𝑖 ), 𝑞𝛼 (𝑥 𝑖 

)];

22 

(

Calculate 𝑄
 )

 (1−𝛼) 


 

( )

 and 𝑄 (1−𝛼) 

 ;
  

 

23 for (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  test do 

24 Compute [𝑞  

𝑒 (𝛼 𝑥 𝑖), 𝑞𝛼 
𝑒

 

(𝑥𝑖 )] with each subset TCN estimator

Update the latest s residuals; 

25 if i-N=0 mod s then

26 for j=i-s,… ,i-1 do

27 Compute  𝑗 

and  𝑗 

: 

28 Intslashdollar𝑠 =𝑗  𝑞𝛼 (𝑥 𝑗 ) − 𝑦 𝑗 , 𝑠 𝑗 = 𝑞𝛼 (𝑥𝑗 ) − 𝑦 ;𝑗

29 Update residual set and reset index of  and  as

follows:

30
− ⋃

𝑆 = (∁ {𝑠𝑗 } 

𝑗 𝑁})
 

𝑗−1
  ,𝑗 

31
−𝑆 = (∁ {𝑠 𝑗}
𝑗 𝑁 ⋃

𝑗−1 )
 

  𝑗 

;

32 end

33 end

34 Calculate �̂� 𝛼(𝑥 𝑖 

), as shown in Eq. (19); 

35 Return 𝐵𝐿𝐵(𝑥 𝑖) = min(�̂�𝛼(𝑥𝑖 )), max𝑖  

𝐵𝑈𝐵(𝑥 ) = (�̂� (𝑥 .𝛼 𝑖))
36 end

̂ 𝐶 𝛼(𝑥 𝑖) = 

[ 

𝑞  𝛼
( 

𝑥 𝑖 

) 

− 𝑄 (1−𝛼) 

( 

 

) 

, 𝑞  𝛼
( 

𝑥𝑖 

) 

+ 𝑄 (1−𝛼)

( 

 

)] 

, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  test 

,

(19) 

 =
{ 

𝑠 𝑖 

|𝑠 𝑖 = 𝑞  𝛼(𝑥 𝑖) − 𝑦 𝑖

}𝑖=𝑡−𝑁 

𝑖=𝑡−1 

, (𝑥 𝑖 

, 𝑦 𝑖 

) ∈  cal, (20) 

 =
{ 

𝑠 𝑖 

|𝑠 𝑖 = 𝑞  𝛼(𝑥 𝑖) − 𝑦 𝑖
}𝑖=𝑡−𝑁
𝑖=𝑡−1 , (𝑥 𝑖, 𝑦 𝑖 

) ∈  cal, (21)

where  and  denote the latest N residuals before time t, respectively.

Fig. 3. The training process of CETQCRN.

Compared with single  in Eq. (15),  and  prevent the PI cover-

age error from being asymmetrically spread over the left and right tails,

respectively. They independently control the coverage of the upper and 

lower quantile functions to obtain a more valid coverage guarantee.

As a result, this section combines TCN and ECQR to construct 

conformalized ensemble temporal convolutional quantile regression net-

work (CETCQRN) to estimate the HVAC system’s baseline, as shown in 

Algorithm 1.

The entire training process is presented in Fig. 3. 

3.3.1. Construct dataset

The dataset is constructed by collecting historical energy consump-

tion data from HVAC systems, along with additional energy usage in-

formation such as lighting and elevators. Furthermore, external factors, 

including weather conditions and occupant flow data, are incorporated. 

The collected data undergoes preprocessing, including outlier removal, 

missing value imputation, time scale alignment, and data integration 

to form the final dataset D. Subsequently, the dataset is partitioned into 

training set  train 

, validation set v al 

, and test set  test  

 

. To facilitate ensem

ble training, the training set is further divided into E subsets, denoted

as  train,1 

, train, 2 

,… ,tr ain, e 

.

-

3.3.2. Train homogeneous subset models

Each subset,  train 1 

,tr ain 2 

,… , train ,,𝑒  is used to train a TCN model, , ,
as illustrated in Fig. 2, with all models initialized using identical hy-

perparameters. The subsets are fed into their respective TCN models 

(TCN 1, TCN 2, …, TCN e) for parallel training. Then,  val 

is used to 

validate the model by evaluating the pinball loss, as defined in Eq. (18). 

If the loss falls within an acceptable range, the trained model is finalized. 

Otherwise, the process enters an iterative optimization stage, where fur-

ther refinements are applied until the maximum number of iterations is 

reached, yielding the final trained model.

In the homogeneous subset models’ training process, the stochastic 

search method is adopted to find the best hyperparameters by mini-

mizing the pinball loss. This enables us to update the corresponding 

homogeneous subset model. In this stage, the E trained homogeneous 

subset models are generated.

3.3.3. Yield ensemble residual set

E trained homogeneous subset models are leveraged to generate the 

ensemble residuals set. Specifically, the input  agg,𝑒 

for the e-th trained

homogeneous subset model is the relative complement ∁  

train train of,𝑒  

 train in ,𝑒    

 train. For example, the input  agg,1 for the trained TCN 1,
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which consists of  train,2 

,  train,3 

, …,  train,e 

, excluding  train,1 

. This leave-

one-out approach enhances the model’s generalization properties. Then, 

each subset generates its corresponding PIs from e-1 models, based on 

Eq. (14). Furthermore, each subset averages the e-1 PIs to generate its 

ensemble PIs. For example, the ensemble PIs for  train,1 

are denoted as

PIs  train,1
. Finally, the E ensemble PIs generate the ensemble residuals set

 and  based on Eqs. (20) and (21). 

3.3.4. Conformalize PIs

In this stage, the test set tes t is  

 

used as the input for the 𝐸 trained 

homogeneous subset models. The corresponding results 𝑒 PIs, denoted as

PIs  , PIs  , … , PIs  are obtained.  

 

The PIs are then averaged 

train,1 tr ain,2  

 train,e
𝐸

to obtain PIs  . The latest 𝑁 predicted points (𝑠𝑗  

tes t 

−1 

, 𝑠𝑗−2 

,… , 𝑠 𝑗−𝑁 

) are

used to update the residual sets  and , replacing the original initial 

values. Finally, the HVAC system’s consumption BLB and BUB can be 

estimated according to Eq. (19).

4. Case studies 

4.1. Simulation setup 

4.1.1. Data description

This paper presents case studies using realistic HVAC energy con-

sumption, occupancy flow, and numerical weather forecast data col-

lected from a specific office building in Macao. The HVAC energy 

consumption baseline data covers the period from May to September 

2021, with a time granularity of 15 min. We set the data from May 

to August into 4 subsets, with the validation set spanning from 1 st 

September to 15th September and the test set spanning from 16th 

September to 30th September. The HVAC consumption baseline fluc-

tuations are caused by the data heteroscedasticity and autocorrelation, 

which means that the interference term at each observation point is gen-

erated from an independent but non-identical distribution. In Fig. 4, the 

values under the green dashed line represent the variances at differ-

ent times. Variations in the variance of baseline power can indicate the 

presence of heteroscedasticity. The values indicated outside the green 

dashed line represent the covariance between any two distinct time 

points. The non-zero covariance between the baseline power at the 

same time on different days can indicate the presence of autocorrela-

tion. It was found that from 08:00 to 20:00, the energy consumption 

exhibits significant autocorrelation and heteroscedasticity, which can

Fig. 4. Covariance and variance of building HVAC systems’ baseline power.

be attributed to the flow of occupancy, weather conditions, and tem-

poral variability. The significant heteroscedasticity and autocorrelation 

observed in HVAC energy consumption indicate that the data does not 

conform to the assumption of i.i.d.

The parameters of the HVAC systems and buildings are based on 

the Macao Standards (CSUS/GBC 07-2015) and the Chinese National 

Standards (GB/T 50378). The details are as follows: the set temperature 

𝜃 set 

is distributed 24 ∼ 27 

◦ C to meet various users’ comfort requirements; 

the ambient temperature is based on real-time outdoor data collected by 

the meteorological station at the University of Macau; the maximum in-

door temperature deviation is 1 

◦ C; Taking into account that Macau is 

situated in the South Subtropical zone, where the HVAC systems coef-

ficient of performance 𝜂 is distributed among 4.4 ∼ 5.9. Moreover, the 

thermal capacity 𝐶 and𝑖  resistance 𝑅 𝑖 

⎧

⎪

⎨

⎪

⎩

𝐶 𝑖𝑛 

= 𝑐 𝐴𝑖𝑟 

𝜌 𝐴𝑖𝑟 

𝑉 = 𝑐 𝐴𝑖𝑟 

𝜌 𝐴𝑖𝑟𝐴ℎ, ∀𝑖 ∈ ,

𝑅 𝑖𝑛 = 

1
𝐴⋅𝑈 = 

[ 

𝑈 

( 

2𝐴 + 4ℎ 

√ 

𝐴
)] −1

, ∀𝑖 ∈ , 

(22)

of the room are obtained as:

where 𝑐 𝐴𝑖𝑟 

= 1.005 kJ∕(kg⋅ 

◦ C) and 𝜌 𝐴𝑖𝑟 

=  

 1.205 kg∕ 3m are the specific heat 

capacity and  

 density of  

  

2air, respectively; 𝑈 = 3.6 W∕(m ⋅◦ C) denotes the 

heat transfer coefficient; 𝑉 , 𝐴 and ℎ represent the volume, height, and 

surface area of the building, respectively. The area 𝐴 of the building is 

assumed to be a square.

4.1.2. Evaluation metrics

Considering the effectiveness of proposed probabilistic methods, we 

use the following metrics to measure the results.

Prediction Interval Coverage Probability (PICP) aims to assess the 

effectiveness of PIs by calculating the percentage of predicted values �̂� 𝑖 

that fall within the prediction interval:

PICP = 

1
𝑛

𝑛
∑ 

𝑖=1
𝑘 𝑖 

, (23)

𝑘 𝑖 

= 

{

1, �̂� 𝑖 ∈ ̂ 𝐶 𝛼
( 

𝑥𝑖 

)

0, �̂� 𝑖 ∉ ̂ 𝐶 𝛼
( 

𝑥𝑖 

) , (24)

where 𝑛 represents the number of estimation points and 𝑘 𝑖 

represents 

whether the point real observation 𝑥 𝑖 

falls into the estimation PIs.

Prediction Intervals Normalized Average Width (PINAW) offers in-

sights into the precision of PIs by measuring average width relative to 

the range of observed values.

PINAW = 

1
𝑛(𝑌 max 

− 𝑌 min)

𝑛
∑ 

𝑖=1
(𝐵𝑈𝐵(𝑥 𝑖 

) − 𝐵𝐿𝐵(𝑥 𝑖 

)), (25)

where 𝑌 = {𝑦1 , 𝑦 2 

,… , 𝑦 𝑖 

}. 

To prevent the situation where we have to sacrifice the PINAW in 

order to obtain a higher PICP, we adapt the modified coverage width-

based criterion (CWC) from [34] to provide a summary of the quality 

of the PIs. When the PICP is the same, the PINAW is lower, the CWC is 

bigger, and the yielded PIs are better.

CWC = (1 − PINAW)𝑒 

−𝜆(PICP−(1−𝛼)) 

2 

, (26)

where 𝜆 is the penalty coefficient to penalize the points that fail to fall 

in the PIs; Based on the specific data characteristics and recent study 

[35,36], 𝜆 is 5 in this paper.

4.1.3. Hyperparameters setting

The TCN parameters are: learning rate is 0.001; batch size is 120; 

epochs are 200; the number of layers is 3; kernel size is [2,3,4]; num-

ber of channels is [64,128,64]; dropout is 0.2; optimizer is Adam. In 

Algorithm 1, ensemble number E is 4, N is 4, and s is 24, respectively.

Applied Energy 395 (2025) 126144 

7 



S. Jiang, H. Hui and Y. Song

Table 1 

Abbreviations and full names of baseline comparison methods.

Abbreviation Full name

ETCQRN Ensemble temporal convolutional quantile regression network 

CELSTMQR Conformalized ensemble long short-term memory quantile regression 

ELSTMQR Ensemble long short-term memory quantile regression 

CEXGBQR Conformalized ensemble extreme gradient boosting quantile regression 

EXGBQR Ensemble extreme gradient boosting quantile regression 

CELGBQR Conformalized ensemble light gradient boosting quantile regression 

ELGBQR Ensemble light gradient boosting quantile regression 

CEGBQRT Conformalized ensemble gradient boosting quantile regression tree 

EGBQRT Ensemble gradient boosting quantile regression tree 

CTCQRN Conformalized temporal convolutional quantile regression network 

TCQRN Temporal convolutional quantile regression network

4.1.4. Environment setup

All the experiments are implemented using Ptyorch on a desktop with 

an Intel(R) Core(TM) i7-12700 CPU and NVIDIA GeForce RTX 3060TI 

GPU, with 64GB of RAM on a Windows 11 platform.

4.2. Estimation results of credible probabilistic baseline

In order to comprehensively demonstrate the proposed method, we 

select different benchmarks for both regression methods and PI yield 

methods.

4.2.1. Regression methods

We compare the TCN with four commonly used benchmarking re-

gression methods to show its advantages: long short-term memory 

(LSTM), the light gradient boosting machine (LightGBM), the extreme 

gradient boosting (XGBoost), and the gradient boosting regression tree 

(GBRT).

4.2.2. PIs yield methods

We compare the ensemble conformalized quantile regression with 

three benchmarking PI yield methods to show its advantage: ensem-

ble quantile regression, conformalized quantile regression, and quantile 

regression.

We utilize regression methods and PI yield methods to create 

eleven baseline comparisons. They are: ensemble temporal convo-

lutional quantile regression network (ETCQRN), conformalized en-

semble long short-term memory quantile regression (CELSTMQR), 

ensemble long short-term memory quantile regression (ELSTMQR), con-

formalized ensemble extreme gradient boosting quantile regression 

(CEXGBQR), ensemble extreme gradient boosting quantile regression 

(EXGBQR), conformalized ensemble light gradient boosting quantile 

regression (CELGBQR), ensemble light gradient boosting quantile re-

gression (ELGBQR), conformalized ensemble gradient boosting quantile

regression tree (CEGBQRT), ensemble gradient boosting quantile re-

gression tree (EGBQRT), conformalized temporal convolutional quantile 

regression network (CTCQRN), and temporal convolutional quantile re-

gression network (TCQRN). For ease of reading, the methods mentioned 

above are summarized in Table 1.

We can assess the efficacy of the TCN model by comparing the results 

from the following four methods, CELSTMQR, CEXGBQR, CELGBQR, 

and CEGBQRT. Furthermore, to showcase the PIs yield model, we com-

pare the results from the following three methods, CETCQRN, CTCQRN, 

and TCQRN. Lastly, we comprehensively demonstrate the effectiveness 

of the PIs yield methods by comparing the results from different regres-

sion methods with ECQR and regression methods with CQR. We conduct 

case studies using different methods at five different prediction interval 

nominal confidence (PINC) levels, which are 95 % PINC, 90 % PINC, 

80 % PINC, 70 % PINC, and 50 % PINC. PINC is the confidence level 𝛼.
Table 2 displays all the estimation results. It can be observed that 

the proposed method performs best in terms of CWC at different PINCs. 

Generally, when PINC is lower, the CWC is higher. In comparison to 

ETCQRN, the proposed method consistently exhibits lower PICP and 

PINAW, indicating that ETCQRN sacrifices PI width to ensure more 

points fall within the PIs. The results from different regression methods 

show similar patterns. In other words, the ensemble learning strategy 

facilitates the model in learning from data deeply.

We can find that in terms of CWC the proposed method is always over 

0.8. Whatever at which PINC, the proposed method can keep the biggest 

CWC. And it increased by 10.485 % than CELSTMQR at different PINCs 

on average. The CELSTMQR performs more stable than CEXGBQR and 

CELGBQR at different PINCs. It is evident from Fig. 5 that as the PINC 

decreases, the proposed method CWC increases rapidly. From a 50 % 

PINC to a 95 % PINC, it is increased by 17.412 %, while the CTCQRN 

only increases by 4.530 %. This phenomenon demonstrates that the pro-

posed method can produce reliable prediction intervals even when the 

PICP is low.

In order to display the different methods’ results, we have chosen 

Sunday, September 19th, as the holiday situation depicted in Fig. 6; 

and Monday, September 20th, as the weekday situation depicted in 

Fig. 6. On holidays, the proposed method and CEXGBQR have median 

values that are closest to the real baseline, followed by CELGBQR and 

CELSTMQR. The worst performer is CEGBQRT, with median values al-

ways higher than the real baseline. Although CEXGBQR performs well 

in terms of median values, the PIs it generates are too wide from 08:00 

to 12:00. This indicates a failure to capture the fast-decreasing base-

line, or in other words, an inability to adjust to the varying baseline. 

On weekdays, CEGBQRT still has the worst performance in terms of 

median values, and its PIs are too wide during working hours (08:00 

to 20:00). CEXGBQR also generates overly wide PIs during working 

hours, while only CELGBQR produces more valid PIs, although they are 

wider than those of the proposed method. We can conclude that the

Table 2

HVAC Consumption baseline probabilistic estimation results from different methods at different PICPs.

Method 95 % 90 % 80 % 70 % 50 %

PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC

(%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.)

Proposed 95.3 0.176 0.824 88.8 0.122 0.877 80.6 0.087 0.913 72.0 0.058 0.940 48.2 0.031 0.967

ETCQRN 97.0 0.201 0.797 93.9 0.153 0.841 87.4 0.110 0.866 76.4 0.083 0.898 64.8 0.070 0.834

CELSTMQR 92.7 0.231 0.767 83.0 0.172 0.808 81.0 0.164 0.836 75.7 0.171 0.816 45.1 0.125 0.865

ELSTMQR 96.9 0.268 0.731 94.2 0.194 0.799 88.8 0.143 0.824 83.9 0.141 0.780 52.6 0.091 0.906

CEXGBQR 92.9 0.200 0.798 93.2 0.179 0.817 83.0 0.115 0.881 71.4 0.086 0.913 54.5 0.050 0.940

EXGBQR 97.6 0.231 0.766 95.1 0.194 0.796 88.2 0.127 0.844 81.8 0.097 0.842 61.5 0.059 0.881

CELGBQR 93.5 0.177 0.822 84.2 0.139 0.847 75.1 0.101 0.888 79.0 0.089 0.875 61.8 0.057 0.880

ELGBQR 93.4 0.196 0.803 87.3 0.145 0.852 77.3 0.103 0.894 74.1 0.084 0.908 53.9 0.052 0.941

CEGBQRT 94.1 0.284 0.716 89.4 0.157 0.843 78.4 0.100 0.899 74.7 0.075 0.915 48.6 0.038 0.961

EGBQRT 42.7 0.168 0.212 42.4 0.085 0.295 38.3 0.058 0.395 36.7 0.041 0.551 31.6 0.030 0.819

CTCQRN 96.0 0.203 0.797 92.3 0.139 0.859 82.3 0.092 0.906 73.4 0.068 0.927 55.9 0.040 0.943

TCQRN 96.2 0.253 0.746 88.4 0.186 0.813 79.1 0.143 0.857 65.0 0.114 0.875 44.9 0.082 0.906
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Fig. 5. HVAC consumption baseline probabilistic estimation results: (a) CWC from different regression methods at different PINCs; (b) CWC from different PI yield 

methods at different PINCs.

Fig. 6. HVAC consumption baseline probabilistic estimation results with differ-

ent regression methods at 95 % PINC: (a) A specific holiday estimation results; 

(b) A specific weekday estimation results.

proposed method using TCN as a regression method can capture base-

line variations from the historical baseline better than other regression 

methods.

We present the results compared to different yield PI methods in 

Fig. 7. Since the bottom regression method is TCN, the median values 

from ETCQRN and the proposed method are the same, causing their 

lines to overlap in Fig. 7. The main difference between the methods lies 

in the PIs. Similarly, the median values from TCQRN and CTCQRN are 

also the same. Overall, the median values from the proposed method 

and CTCQRN show similar performance. Specifically, when the base-

line ramps up at 10:00 on holidays, the proposed method can track the 

change, while CTCQRN cannot. However, on weekdays from 12:00 to 

14:00, the median values of the proposed method exceed the real base-

line, whereas CTCQRN and TCQRN are closer to the real baseline. And 

the proposed method, ETCQRN, CTCQRN, and TCQRN have similar per-

formances on yield PIs. Their PIs can contain most of the real baseline

Fig. 7. HVAC consumption baseline probabilistic estimation results with differ-

ent PI yield methods at 95 % PINC: (a) A specific holiday estimation results; (b) 

A specific weekday estimation results.

at 95 % PINC. To make it clearer, we also display the results at 50 % 

PINC in Fig. 8.

When employees arrive at the office, they start up all the HVAC 

equipment with a fixed temperature setting. This causes higher energy 

consumption during regular working hours. However, when they leave 

the meeting room or when the outside temperature is low, they may 

regulate the temperature setting higher to decrease the consumption. 

In Fig. 8, we can observe that, according to the proposed method, the 

length of the up error bar is shorter than the length of the down error 

bar during working hours. In contrast, fewer employees are working at 

night, leading to lower basic energy consumption. When employees need 

to work overtime, they turn on the HVAC equipment, which increases 

energy consumption. So during off-working hours, the length of the up 

error bar exceeds that of the down error bar. While the other methods
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Fig. 8. HVAC energy baseline estimation results at 50 % PINC with different PI 

yield methods.

Fig. 9. HVAC consumption baseline probabilistic estimation results based on the 

proposed CETCQRN at different PINCs.

have nearly the same length for the up error bar and down error bar, they 

fail to accurately quantify the uncertainties within a day. As a result, 

although the PIs are narrower than the proposed method, few baseline 

points fall into them. In conclusion, the proposed method can yield more 

valid PIs by flexibly reflecting the direction that has greater variabil-

ity, taking into account the level of uncertainty in different situations 

throughout the day.

From Fig. 9, we can observe that the PIs during off-working hours 

are lower than the PIs during working hours, indicating significantly

less uncertainty during off-working hours. When the PINC is lower, the 

PIs are wider to ensure effective coverage ranges.

4.2.3. Discussion on more general scenarios

To further assess the adaptability of our method in broader contexts, 

we have included a case study on a gymnasium in addition to the orig-

inal office building dataset from Macau. The choice of a gymnasium is 

motivated by its distinct operational characteristics compared to typical 

commercial buildings, and the results are shown in Table 3.

In this study, we select September 20 (weekday) and September 24 

(holiday) as representative days to analyze how CETCQRN performs 

under different occupancy and operational conditions. A comparative 

analysis of baseline PIs generated by CETCQRN across these two scenar-

ios is provided in Fig. 10. On weekdays, HVAC demand follows a more 

regular pattern, with stable occupancy-driven fluctuations. CETCQRN 

accurately captures the baseline trend and provides tight, valid pre-

diction intervals. On holidays, CETCQRN successfully adapts to the 

changing conditions, maintaining a reliable prediction interval that 

reflects the uncertainty in demand.

To strengthen this discussion, we provide a comparative analysis in 

Fig. 10, illustrating the performance of CETCQRN across multiple sce-

narios. These results highlight the robustness of the proposed method 

and its potential to serve as a generalized approach for HVAC baseline 

estimation in diverse building environments.

4.3. Evaluation results of credible demand response capacity

In this section, we calculate the CDRC according to the PIs from the 

previous section. The PIs lower bound is BLB, and the upper bound is 

BUB. During working hours, which are from 08:00 to 20:00, the set tem-

perature is set at 24 

◦ C. During off-working hours, which are from 00:00 

to 07:00 and from 20:00 to 24:00, the temperature is set at 27 

◦ C. We 

apply different regulation levels of 1 

◦ C, 2 

◦ C, and 3 

◦ C, respectively.

The range of CDRC downregulation refers to the interval in which 

power increases as the setting temperature decreases. The downregu-

lation service begins during off-working hours and lasts for 15 min. In 

Table 4, we provide the mean values of CDRCmin  

 

and CDRCmax 

 

for differ

ent PINCs under various regulation scenarios. At different PINC levels, 

the CDRCmin 

 

, which is the lower bound, shows an average increase of 

30.076 kW, which is 1.09 times higher than the holiday CDRC min  

 

of

27.721. And the CDRC max 

, which is the upper bound, shows an aver

-

-

age increase of 42.235 kW, which is 1.15 times higher than the holiday 

CDRC max 

of 36.605 kW. The range of CDRC upregulation refers to the 

interval in which power decreases as the setting temperature increases. 

It is evident that as the setting temperature increases, the weekday 

CDRC rises rapidly, as shown in Table 5. The upregulation service be-

gins during working hours and lasts for 15 min. The evaluation results 

at different PINC levels are shown in Fig. 11. It is clear that the holi-

day CDRC is lower than the weekday CDRC due to employee activity.

Table 3

Gymnasium HVAC consumption baseline probabilistic estimation results from different methods at different PICPs.

Method 95 % 90 % 80 % 70 % 50 %

PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC

(%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.) (%) (p.u.) (p.u.)

Proposed 97.3 0.329 0.669 90.9 0.237 0.763 82.3 0.163 0.835 71.9 0.109 0.889 51.1 0.055 0.944

ETCQRN 97.5 0.344 0.654 93.7 0.245 0.750 76.5 0.171 0.824 76.5 0.113 0.868 56.9 0.068 0.910

CELSTMQR 97.7 0.447 0.551 86.2 0.349 0.646 68.5 0.205 0.744 74.6 0.191 0.800 64.0 0.128 0.791

ELSTMQR 98.3 0.504 0.493 89.2 0.319 0.681 66.0 0.175 0.748 81.4 0.172 0.776 49.1 0.074 0.926

CEXGBQR 98.0 0.470 0.528 96.5 0.344 0.642 90.3 0.224 0.736 86.1 0.142 0.754 78.7 0.087 0.605

EXGBQR 94.4 0.433 0.567 88.8 0.319 0.681 87.9 0.222 0.754 66.7 0.124 0.871 53.7 0.077 0.917

CELGBQR 97.7 0.439 0.559 94.3 0.332 0.662 80.3 0.206 0.794 77.8 0.158 0.817 54.5 0.109 0.882

ELGBQR 78.4 0.340 0.575 66.6 0.261 0.562 65.5 0.182 0.736 54.0 0.133 0.763 28.7 0.068 0.743

CEGBQRT 97.5 0.470 0.528 95.8 0.317 0.672 88.6 0.194 0.777 79.1 0.140 0.825 59.5 0.070 0.889

EGBQRT 59.0 0.198 0.420 61.0 0.139 0.565 58.1 0.090 0.716 56.4 0.077 0.841 45.0 0.093 0.896

CTCQRN 98.8 0.448 0.548 91.3 0.373 0.626 87.2 0.291 0.691 73.7 0.224 0.771 69.2 0.133 0.721

TCQRN 98.1 0.363 0.634 92.8 0.278 0.719 89.2 0.185 0.781 66.4 0.132 0.862 63.3 0.155 0.773
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Fig. 10. Gymnasium HVAC consumption baseline probabilistic estimation: (a) results based on the proposed CETCQRN at different PINCs; (b) results on a weekday; 

(c) results on a holiday.

Table 4 

Building HVAC systems downregulation CDRC at different PINCs.

Regulation

level

Scenarios 95 % 90 % 80 % 70 % 50 %

CDRCmin 

(kW)

CDRC max
(kW)

CDRCmin 

(kW)

CDRCmax 

(kW)

CDRC min
(kW)

CDRCmax 

(kW)

CDRCmin 

(kW)

CDRC max
(kW)

CDRC min
(kW)

CDRC max
(kW)

Decrease 1 ◦ C
Weekdays 15.526 26.593 12.510 21.228 15.004 20.033 15.849 19.619 16.302 18.115

Holidays 14.294 23.839 11.571 19.515 13.738 18.304 14.561 17.959 15.163 16.931

Decrease 2 ◦ C
Weekdays 31.053 53.186 25.019 42.457 30.008 40.065 31.697 39.239 32.604 36.231

Holidays 28.581 47.664 23.136 39.021 27.469 36.598 29.115 35.909 30.320 33.856

Decrease 3 ◦ C
Weekdays 46.579 79.780 37.529 63.685 45.012 60.098 47.546 58.858 48.906 54.346

Holidays 42.871 61.496 34.704 58.531 41.203 54.897 43.673 53.863 45.480 50.785

Table 5

Building HVAC systems upregulation CDRC at different PINCs.

Regulation

level

Scenarios 95 % 90 % 80 % 70 % 50 %

CDRCmin 

(kW)

CDRC max
(kW)

CDRC min
(kW)

CDRC max
(kW)

CDRC min
(kW)

CDRC max
(kW)

CDRC min
(kW)

CDRC max
(kW)

CDRC min
(kW)

CDRC max
(kW)

Increase 1 ◦ C
Weekdays 26.800 42.406 27.277 38.945 29.329 37.727 30.318 37.348 31.436 36.150

Holidays 10.751 19.645 9.412 17.120 11.045 15.722 11.731 15.447 12.535 14.870

Increase 2 ◦ C
Weekdays 53.523 84.701 54.469 77.783 58.569 75.343 60.545 74.587 62.777 72.192

Holidays 21.503 39.289 18.825 34.240 22.089 31.445 23.462 30.893 25.069 29.740

Increase 3 ◦ C
Weekdays 80.285 127.052 81.703 116.675 87.854 113.015 90.818 111.881 94.166 108.287

Holidays 32.254 58.934 28.237 51.360 33.134 47.167 35.193 46.340 37.604 44.610

On weekdays, the sudden increase in CDRC is caused by employees 

not resetting the HVAC setting temperature according to the decreased 

ambient temperature in time, resulting in a high potential for regula-

tion. In contrast, although the holiday CDRC also grows, its absolute 

value remains insignificant. At different PINC levels, CDRC min 

shows

an average increase of 57.933 kW, which is 2.61 times higher than

the holiday CDRC of 22.190. And CDRC max 

shows an average increase

of 76.867 kW, which is 2.32 times higher than the holiday CDRC of

33.121 kW.

In general, downregulation CDRC and upregulation CDRC have sim-

ilar CDRC on holidays for office buildings. While on weekdays, the 

upregulation CDRC min is 1.93 times higher than the downregulation
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Fig. 11. HVAC credible demand response capacity evaluation results at different 

PINCs: (a) HVAC downregulation credible demand response capacity; (b) HVAC 

upregulation credible demand response capacity.

CDRC, and the upregulation CDRC max 

is 1.82 times higher than the 

downregulation CDRC.

We still select September 19th and September 20th to display typ-

ical CDRC results at 95 % PINC, as shown in Fig. 12. For clarity, we

Fig. 12. HVAC credible demand response capacity evaluation results under different situations: (a) during the holidays; (b) during the weekdays.

take the upregulation CDRC opposite number to figure the regulation 

over a single day effectively. On holidays, the single-day average down-

regulation CDRC ranges from [12.198, 20.074] with a 1 

◦ C decrease, 

[30.200, 51.282] with a 2 

◦ C decrease, and [36.594, 60.223] with a 

3 

◦ C decrease, respectively. And the average upregulation CDRC ranges 

from [10.770, 19.477] with a 1 

◦ C increase, [21.541, 38.953] with a 

2 

◦ C increase, and [32.311, 58.430] with a 3 

◦ C increase, respectively. 

On weekdays, the average downregulation CDRC ranges from [12.413, 

21.869] with a 1 

◦ C decrease, [24.827, 43.738] with a 2 

◦ C decrease, 

and [37.240, 65.607] with a 3 

◦ C decrease, respectively. And the average 

upregulation CDRC ranges from [23.844, 37.637] with a 1 

◦ C increase, 

[47.688, 75.274] with a 2 

◦ C increase, and [71.532, 112.911] with a 

3 

◦ C increase, respectively.

5. Conclusion

This paper proposes a CDRC evaluation framework based on the 

CETCQRN probabilistic baseline estimation model for building HVAC 

systems. The CETCQRN model and equivalent thermal parameter model 

are developed to provide regulation services for the power system. 

The proposed CETCQRN baseline evaluation model reflects the multi-

uncertainties impact on the baseline and adapts to the historical baseline 

heteroscedasticity and autocorrelation. The results show that the pro-

posed model can yield valid PIs by flexibly reflecting the direction that 

has greater variability, taking into account the level of uncertainty in dif-

ferent situations throughout the day. The evaluation framework shows 

that on weekdays, the upregulation CDRC range is approximately 2 

times higher than the downregulation CDRC range. It can be concluded 

that there is almost no difference in the downregulation capacity range, 

whereas the upregulation CDRC range on weekdays is twice as much as 

it is on holidays.

6. Discussion and future work 

6.1. Discussion

In this section, the paper compares and contrasts the proposed 

method with customer directrix load (CDL)-based DR, and explores two 

approaches for the rational evaluation of CDRC. CDL provides a top-

down framework, which is designed to guide customers in adjusting
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their electricity consumption in response to system-level signals [37]. 

In this process, the Independent System Operator (ISO) or Regional 

Transmission Organization (RTO) computes the aggregated customer 

directrix load (ACDL) and sends it to the Load Serving Entity (LSE). 

Then, the LSE broadcasts the real-time activation signal to guide cus-

tomers to adjust their consumption based on their own CDL, ensuring 

that the aggregate of all CDLs aligns with the ACDL. Building on 

this concept, Ref. [38] extends the CDL concept with multi-time scale 

CDL-based DR mechanism, incorporating both day-ahead planning and 

intraday optimization. This addresses the dual uncertainties stemming 

from renewable energy generation and customer behavior. Specifically, 

day-ahead CDL serves as the guiding target for DR in the day-ahead 

stage, factoring in the uncertainty of renewable energy. It is presented as 

a band-shaped curve to accommodate the variability in energy forecasts, 

allowing for more accurate and responsive consumption adjustments. 

In summary, CDL provides an up-bottom approach to DR by offering 

real-time, system-wide targets that effectively manage large-scale DR 

deployment.

In this paper, the proposed CDRC evaluation follows a bottom-up 

framework. This means that users can evaluate their own DR capacity 

and provide CDRC intervals to DSO. With the widespread deployment 

of edge sensors, the volume of data collected by edge users has signif-

icantly increased. Taking Shenzhen, China, as an example, since 2023, 

newly integrated buildings monitored by the power grid have predomi-

nantly consisted of public buildings, such as educational and commercial 

buildings [39]. This trend is expected to significantly reduce the prob-

lem of data scarcity. By leveraging local computations carried out by 

users, this approach helps to minimize computational delays. In this 

context, users are more inclined to participate in DR events without con-

cerns regarding privacy leakage, and local computations performed by 

users will not result in extensive computational delays. Additionally, the 

interval-based results offer more reliable information to the grid, which 

helps the DSO create a credible and economically efficient dispatch plan. 

Although the proposed method and the CDL method come from different 

approaches, the proposed method can be adapted to the CDL framework. 

It can assist the RTO/ISO in customizing the ACDL baseline, taking into 

account uncertainties from renewable energy generation and customer 

behavior.

6.2. Future work

From the perspective of end-users, this study proposes a CDRC frame-

work and provides an explanation of its definition and calculation 

methods. However, a significant area for future research is the effec-

tive allocation of the submitted intervals. Specifically, there is a need 

for further investigation into the methodologies for aggregating inter-

vals across different users and establishing appropriate upper and lower 

boundaries of the intervals. Additionally, exploring the design of market 

mechanisms that facilitate high-return strategic behavior in the con-

text of market participation and bidding, while utilizing the intervals, 

represents another important avenue for future research. Such advance-

ments would contribute to enhancing both the economic efficiency and 

flexibility of the DR system.
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