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Abstract—In this study, the home energy management 
problem, which can be regarded as a high-dimensional 
optimization problem, for numerous residential houses, is 
addressed. The concept of the aggregator is utilized to reduce 
the state and action space and to handle the high 
dimensionality. A two-stage deep reinforcement learning 
(DRL)-based approach is proposed for the aggregators to track 
the schedule from a superior grid and guarantee the operation 
constraints. In the first stage, a DRL control agent is set to 
learn the optimal scheduling strategy interacting with the 
environment based on the soft-actor-critic framework and 
generate the aggregate control actions. In the second stage, the 
aggregate control actions are disaggregated to individual 
appliances considering the users’ behaviors. The uncertainty of 
an electric vehicle’s charging demand is quantitatively 
expressed based on the driver’s experience. An aggregate 
anxiety concept is introduced to characterize the driver’s 
anxiety on the electric vehicle’s range and uncertain events. 
Finally, simulations are conducted to verify the effectiveness of 
the proposed approach under dynamic user behaviors, and 
comparisons show the superiority of the proposed approach 
over other benchmark methods. 

Keywords—Home energy management, electric vehicles 
(EVs), deep reinforcement learning, soft actor-critic, dynamic 
user behaviors. 

I. INTRODUCTION 

In recent years, the deployment of distributed energy 
resources (DERs), such as rooftop solar panels, electric 
vehicles (EVs), and battery storage in smart grids, has 
increased to mitigate climate change and carbon emissions 
[1]. Although these resources enhance energy efficiency and 
grid reliability, their integration poses challenges in energy 
management, particularly in the management of numerous 
home appliances and DERs in residential areas [2]. 
However, the advent of smart energy devices and advanced 

metering has enabled home energy management (HEM), 
which is employed to optimize appliance operations to 
reduce costs and maintain comfort [3]. 

In HEM research, model-based optimization approaches, 
which require detailed system modeling, and model-free 
methods (such as deep reinforcement learning (DRL)), 
which learn optimal schedules through interaction with the 
environment, are predominantly utilized. DRL has been 
adopted in numerous studies on the HEM problem, and its 
excellent control performance in a dynamic environment has 
been demonstrated. In [4], a multi-agent DRL with an 
attention mechanism was utilized in heating, ventilation, and 
air conditioning (HVAC) control to minimize the energy 
costs in a multizone commercial building; the mixed air 
temperature was used to describe the building temperature 
regulated by a group of HVAC systems. In [5], a DRL 
model that combined local HEM systems with a global 
server was proposed to optimize the scheduling of multiple 
smart homes and their appliances. In [6], personalized 
comfort was improved while reducing electricity costs and 
flattening the demand curve by incorporating human 
feedback and activity into the decision-making process. The 
aforementioned DRL-based HEM methods have exhibited 
promising performances in dynamic environments. However, 
individual EV-charging models have mostly been described 
solely based on the arrival time, departure time, and desired 
battery energy, and the distinct characteristics of drivers’ 
individual behaviors, have been neglected. The effectiveness 
of DRL in dynamic HEM environments has been shown in 
previous studies; however, challenges persist, particularly in 
capturing diverse user needs and preferences and in 
addressing the high dimensionality of scheduling many 
appliances. 

This paper introduces a novel two-stage aggregation 
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approach for HEM within a virtual power plant framework 
optimized at the aggregator level to mitigate dimensionality 
issues. In the first stage, the soft-actor-critic (SAC) DRL 
framework is used to learn optimal scheduling strategies, 
whereas in the second stage, control actions are 
disaggregated to individual appliances by considering user 
behaviors. Previous aggregator models are extended by 
integrating driver experience, charging preferences, and 
anxieties into EV-charging behaviors. 

II. SYSTEM OPERATION MODEL 

The main control objectives in this study are storable 
loads, including batteries, HVAC systems, and EVs, as 
depicted in Fig. 1. In this section, the dynamic models of the 
storable loads in residential houses are presented, as 
referenced in [7]. 

A. Battery Model 
In this study, we consider small-capacity household 

batteries. Household batteries can release energy into the 
grid for profit or support HVAC systems and EVs at high 
state of charge (SoC) levels. The residual energy of the 
batteries is calculated as 

BAT BAT BAT BAT BAT
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BAT BAT BAT BAT
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 , (1) 

where θi
BAT, ηi

BAT, pi
BAT, and ei

BAT denote the dissipation 
rate, conversion coefficient, power consumption, and SoC of 
battery i, respectively. 

We also consider the following operation constraints: 

 BAT BAT BAT
,min ,max( ) ,i i ip t p p� �� � �  ; (2) 

 BAT BAT BAT
,max( ) ( 1) 0,i i ip t p t �� �� � � � �  ; (3) 

 BAT BAT BAT
,min ,max( ) ,i i ie t e e� �� � �  , (4) 

where BAT
,minip  and BAT

,maxip  are the lower and upper bounds of 

the power consumption of battery i, respectively; BAT
,maxi�  is 

the ramping limitation of battery i; BAT
,minie  and BAT

,maxie  are the 

lower and upper bounds of the indoor temperature of battery 
i, respectively. 

B. HVAC Model 
The function of HVAC systems is to improve the comfort 

of residents by maintaining the indoor temperature within a 
reasonable range as 

 � �min max( ) ,t� � ��  , (5) 

where θ denotes the indoor temperature, and θmin and θmax 
represent the lower and upper bounds of the temperature 
comfort zone, respectively. 

The indoor temperature is affected by multiple factors 
such as the previous indoor temperature, ambient 
temperature, air humidity, and active power of the HVAC 
system. Based on the energy storage characteristics of the 
HVAC system, the dynamic model can be presented as 
follows: 
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where θ(t) and θamb(t) are the indoor temperature and 
ambient temperature at timeslot t, respectively; Rhv is the 
equivalent thermal resistance; Chv is the equivalent heat 
capacity; ηhv is the efficiency coefficient; p is the power 
consumption; Δt is the time interval. The dynamic model of 
the HVAC system can be expressed in the unified form of 
an ES as 
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where pi
HVAC, HVAC

ie ,� i
HVAC, ηi

HVAC, and σi
HVAC denote the 

power consumption, indoor temperature, dissipation rate, 
conversion coefficient, and impact factor of the ambient 
temperature of HVAC system i, respectively. These factors 
are defined as 

 

HVAC HVAC

HVAC HVAC

1
( ) ( ), 1

,

i i
hv hv

hv
i i

hv hv hv

e t T t
R C

t
C R C

�

�� �

� 
 
 �		
� �	 
 

	


 . (8) 

In addition to these aforementioned equality constraints, the 
state variables should be limited within a certain range as 
follows: 

 
HVAC HVAC HVAC

,min ,max( ) ,i i ip t p p� �� � �  ; (9) 

 
HVAC HVAC HVAC

,max( ) ( 1) 0,i i ip t p t �� �� � � � �  ; (10) 

 
HVAC HVAC HVAC

,min ,max( ) ,i i ie t e e� �� � �  , (11) 

where HVAC
,minip  and HVAC

,maxip  are the lower and upper bounds 

of the power consumption of HVAC system i, respectively; 
HVAC
,maxi�  is the ramping limitation of HVAC system i; 

HVAC
,minie  and HVAC

,maxie  are the lower and upper bounds of the 

indoor temperature of HVAC system i, respectively. 
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Fig. 1 Schematic of residential houses integrated with photovoltaic 
(PV). 
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C. EV Model 
The dynamic EV user behaviors of multiple residential 

users are uncertain and time-varying. In this study, a 
driver’s experience, charging preferences, and charging 
habits are jointly considered to describe the EV-charging 
model. 

The SoC of the EV can be calculated in a unified form of 
the ES as 

 EV EV EV EV EV( ) ( 1) ( )i i i i ie t e t p t t� �
 � � �  , (12) 

where pi
EV, ei

EV, θi
EV, and ηi

EV denote the power 
consumption, SoC, dissipation rate, and conversion 
coefficient of EV i, respectively. 

The power consumption is limited as 

 
EV EV
,min ,max a dEV , , [ , ]

( )
0,  otherwise

i i
i

p p t T T
p t
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 ; (13) 

 
EV EV EV

,max( ) ( 1) 0,i i ip t p t �� �� � � � �  ; (14) 

 
EV EV EV

,min ,max( ) ,i i ie t e e� �� � �   , (15) 

where EV
,minip  and EV

,maxip  are the lower and upper bounds of 

the power consumption of EV i, respectively; EV
,maxi�  is the 

ramping limitation of EV i; EV
,minie  and EV

,maxie  are the lower 

and upper bounds of the indoor temperature of EV i, 
respectively; Ta and Td are the arrival and departure times of 
EV i, respectively. 
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Fig. 2 Relationship between the charging power and control signal of EVs. 

For a residential house, the EV is only connected to the 
charging pile between the arrival and departure times every 
day. During the charging time, the SoC of the EV is affected 
by the driver’s experience and range anxiety (RA), which 
refers to the driver’s anxiety that the EV range cannot cover 
the driving distance before the next charging. Thus, the RA 
is directly related to the SoC of the EV at the departure time. 
Time anxiety (TA) is introduced to describe the degree of 
driver anxiety regarding uncertain events during charging. 
According to this analysis, the driver’s anxiety can be 

modeled by applying the expected SoC, EV( )ie tEV( )ieEV(ii , during 

charging. 

 � �
( )/( )
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 , (16) 

where α and β are shape parameters. 
A larger α leads to a higher SoC at the departure time, and 

a larger β indicates a higher SoC during charging; these 
exactly characterize the RA and TA, respectively.  

The SoC of batteries and the temperature of houses can 
change flexibly within a certain range, and the residual 
energy can be released to support the EVs. Therefore, for 
the disaggregation operation strategy, we prioritize the 
charging requirements of the EVs. The power dispatched to 
the EV can be expressed as 
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where EV ( )iu t  is the power control signal for EV i and 

discussed in detail in Section III. Fig. 2 depicts the 

relationship between the charging power, EV ( )ip t , and 

control signal, EV ( )iu t , of EVs. Variables a1 and a2 in (18) 

are respectively defined as 

 � �1( ) , ,a
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 , (20) 

where ta and td are the arrival and departure times of EV i, 
respectively, and EV( )ie tEV( )ieEV(ii  is the expected SoC of EV i during 

charging, as defined in (16). 

III. PROPOSED METHOD 

In this section, the proposed two-stage HEM algorithm is 
described. The first step involves designing an aggregation 
model for household appliances to reduce the high 
dimension of the problem. Subsequently, the decision-
making process for the HEM problem is formalized as a 
Markov decision process (MDP). In the first stage of 
decision-making, a DRL control agent utilizing the SAC 
framework is employed to learn the optimal scheduling 
strategy by interacting with the environment and to produce 
aggregate control actions. In the second decision stage, these 
aggregate control actions are decomposed into actions for 
individual appliances by considering the user behavior. 

A. Aggregation Model 
The approximation parameters of aggregators can be 

categorized into two types:  
1) {PM,min, PM,max, EM,min, EM,max, δM,max}, where PM,min (t) 

and PM,max (t) are the lower and upper bounds of the power 
consumption of aggregator M, respectively; EM,min and 
EM,max are the lower and upper bounds of the residual energy 
of aggregator M, respectively; δM,max is the ramping 
limitation of aggregator M. 

The variables are associated with the operation bounds, 
and the approximation is performed by directly summing the 
corresponding parameters. 

2) {θM, ηM, σM, A0,M, A1,M, A2,M, BM, ζM}, which is 
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associated with the dynamic models. The approximation is 
performed by using the weighted average of the 
corresponding individual parameters. The detailed 
calculation method for the approximation parameters of the 
aggregators can be found in [8]. 

B. Control of the Aggregators (Decision Stage I) 
In the first decision stage, a DRL control agent utilizing 

the SAC framework is employed to learn the optimal 
scheduling strategy by interacting with the environment and 
to produce the aggregate control actions. The decision-
making process for the HEM problem is formalized as a 
MDP in which the operator optimizes the cumulative reward 
while operating in an uncertain environment. The MDP is 
defined by using a set of five tuples, {S, A, P, R, γ}, where 
S denotes the set of environmental states observed by the 
DRL agent, A denotes the set of actions, P denotes the 
transition probability from any state s S to any s’ S for 

any action a A, R denotes the immediate reward set, and γ
[0,1] denotes the discount rate that penalizes future 

rewards. 
1) State: The operation problem is solved by the DRL 

agent based on the local observation, sM,t: 
sM,t = {PM (t), EM (t), PM,min(t), PM,max(t), PD(t), (t)}, 

where PM (t) and EM (t) are the power consumption and 
residual energy of aggregator M, respectively; PD (t) is the 
power demand; (t) is the power deviation between the 
power demand and the actual power consumption, and 

� � agg

1
= ( ) ( ) ( )

N
MMD LPt P t tt P�



� �� . 

2) Action: Action aM,t [0,1] is defined as the power 
output rate: 
 ,min , ,max ,min( ) ( )M M M t M MP t P a P P
 � � . (21) 

Thus, the power consumption, PM(t), is limited within the 
[PM,min, PM,max] range. The joint action at time step t can be 
expressed as at = (a1,t, a2,t,…, aN,t). 

3) State transition: The system state can transition from st 
to st+1 with probability P(st, st+1) = Pr(st+1| st, at). 

4) Reward: Because the control objective of the 
aggregators is to cover the power demand and minimize the 
operational cost, when the system state transitions from st to 
st+1, the DRL agent receives reward rt: 

aggpnlpnl cost ADD ADD
1

( ) ( ) ( )
N ope

t MMMr C t C t C t� � �

� �
 � �� ��  , (22) 

where the reward function is divided into three parts: the 
cost of the tracking error, operation cost, and acoustic 
discomfort cost. ωpnl, ωcost, and ωADD are the weight 
coefficients for the three parts. 

5) Objective function: The objective of the DRL agent is 
to maximize the expected value of rewards for the horizon 
of T time steps as 

 � � � �0, ~ ( , ) ,max  
t t t

T t
t t tts a s a a ar s sJ �  
 


 �� � �~�t t,s a,t , � , (23) 

where � is the control policy that generates action at 
according to state st; discounted rate γ determines the effects 
of the future reward on the current reward.  

The SAC approach [9], which is a state-of-the-art 
continuous-control model-free reinforcement-learning 

algorithm, is adopted to cope with high sample complexity 
and improve the stability of model-free DRL methods.  

C. Disaggregation Control of Household Appliances 
(Decision Stage II) 

In the second decision stage, the aggregator generates a 
schedule plan for the individual household appliances to 
follow the aggregate power schedule defined in the first 
decision stage. The process of decomposing an aggregate 
schedule into individual appliance schedules is defined 
below. 

The aggregator meets this power schedule as closely as 
possible by using a disaggregation algorithm in three steps: 

1) The disaggregation algorithm collects the appliances’ 

state information, including SoCs, users’ individual 
behaviors, and power ranges.  

2) The individual power schedule plan is generated by the 
algorithm. 

3) Each control power value is sent to the corresponding 
unit. 

The iteration process guarantees that both the charging 
demand of the EVs and the power schedule defined in the 
first decision stage are satisfied as long as the batteries and 
HVAC systems have residual energy to release. If all 
residual energy is exhausted, the actual power consumption 
deviates from the aggregate schedule in the first decision 
stage. Subsequently, the schedule plan may need to be 
reformulated to meet the charging demand. 

IV. CASE STUDIES 

This section presents simulation case studies conducted to 
validate the effectiveness of the proposed operation and 
disaggregation strategies. 

A. Environment Setup 
Both the critic and actor networks consist of four serial 

fully connected layers. Each layer comprises 128 hidden 
units. The proposed aggregator operator is implemented by 
using Python and PyTorch. The proposed method is 
compared with two benchmarks: Perfect Information 
Optimum and Model Predictive Control. 

B. Training Performance 
In Fig. 3, the curves in the shaded region illustrate the 

average and real daily episode rewards. The total reward is 
divided into three parts: tracking-error cost, operational cost, 
and acoustic discomfort cost, which are listed as follows: 

 agg

agg

pnlpnl
pnl

cost
cost 1

ADD ADD
ADD 1

( )

( )

( )

N ope
MM

N
MM

r C t

r C t

r C t

�

�

�







� 

	
	 
 ��
	
	 
 �


�
�

  . (24) 

Fig. 3 displays that the proposed algorithm can learn a 
stable operation strategy by interacting with the 
environment within the first 6000 episodes. The results 
reveal that the SAC approach is effective for determining 
optimal policies for ES aggregators. 
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Fig. 3 Training performance of the proposed algorithm. 

C. Operation Performance 
The proposed algorithm improves the ability of the 

aggregators to track the power demand curve. The actual 
power of the aggregators and the power demand curve are 
shown in Fig. 4. The orange curve represents the power 
demand curve, and the actual power of the aggregators is 
indicated by using a differently colored bar chart. The 
results show that the DRL-based algorithm performs well in 
terms of tracking accuracy and stability; thus, the 
algorithm’s effectiveness in solving the HEM problem is 
demonstrated. As depicted in Fig. 5, the tracking error 
decreases as the weight coefficient, pnl� , increases. The 

proposed algorithm not only reduces the operational cost but 
also improves the acoustic comfort level of the users by 
balancing the power demand and supply while considering 
the impact of residential users' behavior on the energy 
consumption. 
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Fig. 4 Energy consumption schedules for the aggregators. 
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Fig. 5 Control performance with different weight coefficients. 

The disaggregation performance of aggregator 1 is 
presented in Fig. 6. The simulation results display the 
effectiveness of the proposed two-stage HEM algorithm in 
controlling the indoor temperature and the SoCs of batteries 
and EVs. The proposed two-stage HEM algorithm allows 
the HVAC systems and batteries to release more energy to 
support the EV-charging demand when drivers are more 
concerned about uncertainty, thus reducing the anxiety 
penalty. As a result, the SoC levels of EVs are able to 
exceed the desired level of 80% before the anxious time, 
demonstrating the effective coordination between HVAC 
systems, batteries, and EVs to meet the power demand and 
maintain indoor temperature comfort (20–24 ℃). 

20 20.5 21 21.5 22 22.5 23 23.5 24
Temperature( )

0

0.2

0 20 40 60 80 100
SoC(%)

0

0.1

30 40 50 60 70 80 90
SoC(%)

0

0.4

Pr
ob

ab
ili

ty

0.1

0.05

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

0.2

(a) HVACs

(b) Batteries

(c) EVs

 

Fig. 6 Disaggregation results of individual appliances. 

V. CONCLUSION 

The focus in this study is the aggregator problem of 
defining a schedule plan for numerous residential users in 
the absence of an exact model of each energy source and 
load. The proposed DRL-based approach is evaluated by 
performing numerical simulations based on real-world data, 
and its ability to solve the HEM problem economically and 
effectively by covering the schedule plan from a superior 
grid is demonstrated. The results reveal the effectiveness of 
the proposed algorithm in controlling the indoor temperature, 
battery SoCs, and EV charging while considering individual 
user requirements and uncertainty. Furthermore, a 
comparison with existent methods indicates that the 
proposed algorithm outperforms other approaches in terms 
of energy efficiency and user comfort. 

In conclusion, the proposed DRL-based approach 
provides a novel solution to the HEM problem because the 
behavioral uncertainties of residents and the grid constraints 
are considered. In the future, this work will be extended to 
the energy management of multi-energy buildings, including 
heat pumps and electric boilers.  
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