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Abstract—The increasing penetration of distributed photo-
voltaics(PV) brings volatility and uncertain power outputs to
micro-grids. Larger local regulation capacity is needed for
maintaining the system balance between power supply-side and
demand-side. It is promising to utilize widely distributed demand-
side resources to provide regulation services, such as battery
energy storage system (BESS), heating, ventilation, and air
conditioning (HVAC), et al. However, most heterogeneous demand-
side resources are regulated without coordination, resulting in
the insufficient utilization of the regulation potential. To address
this issue, this paper establishes a multi-time scale optimization
model for micro-grids considering large-scale heterogeneous BESS
and HVAC. Firstly, elements inside the urban micro-grids are
modelled, where the HVAC systems and buildings are modelled
as building based energy storage systems(BBESS), providing
short-term energy storage. Then, a day-ahead optimization is
carried out with the participation of day-ahead electricity market
and ancillary market. Next, an intra-day rolling optimization is
carried out in the real-time market. Finally, the case study shows
that lower operation cost of the urban micro-grid and higher
self-consumption rate of PV can be achieved by applying the
proposed method, and BBESS can replace the demand for energy
storage construction to a large extent.

Index Terms—Photovoltaic, urban micro-grids, HVAC, hetero-
geneous energy storage systems, multi-time scale

NOMENCLATURE

Abbreviations

RES Renewable energy sources
PV Photovoltaics
HVAC Heat, ventilation, and air conditioning
BESS Battery energy storage systems
BBESS Building based energy storage systems
MILP Mixed integer linear programming
QP Quadratic programming
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Variables/Parameters

Pbuy, Psell electricity bought from or sold to the grid
Pdis, Pchar charging power and discharging power of

BESS
Pload power consumption of fixed loads
PPV power generated from PV
PHVAC power consumption of HVAC systems
ePV relative error of prediction on PV generation
σDA variance of the relative prediction error in day-

ahead stage
σRT the common difference for variance of the

prediction error over time
σRT,0 the variance of the relative prediction error of

the first prediction time period in the real-time
stage

τchar, τdis charging and discharging state of BESS
Sbat energy stored in the BESS
SoC state of charge of BESS
η efficiency of BESS
Cm heat capacities of heat accumulating medium
Ci heat capacities of indoor air / equivalent heat

capacity in the ith room
Rim, Ria thermal resistance against heat transfer be-

tween indoor air and heat accumulation
medium, and external air

Ti temperature of indoor air (of the ith room)
Ta, Tm temperature of environment and heat accumu-

lating mediums
ηCOP , ηEER heating coefficient and cooling coefficient of

HVAC systems
A effective window area of the building
p fraction of solar irradiance which directly

affects Tm

ϕm solar irradiance
Cair specific heat capacity of air
ρair, Vi density and volume of indoor air
Si energy stored in the ith BBESS
Pfix,i equivalent fixed load of the ith HVAC systems

CDA, CRT day-ahead and real-time electricity price
τHVAC state of HVAC systems
Ctr transmission fee
RPR unit revenue from peak regulation ancillary
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service
PPR power for peak regulation
τPR state of peak regulation

Superscript

DA value in the day-ahead stage
RT value in the real-time stage
pred predicted value
real realistic value

Subscript/index

t index of time slot
max the upper bound of the value
min the lower bound of the value

I. INTRODUCTION

W ITH the concerns of environmental pollution and the
crisis of fuel energy, the technologies of renewable

energy resources (RES) are developing rapidly [1]. As the
urban micro-grids have become the main body of energy
consumption in modern power systems [2], they should take the
responsibility of cutting carbon emissions and saving energy
resources. Therefore, many renewable distributed generators,
such as photovoltaics (PV) and wind turbines, are established
in the urban micro-grids [3], and provide more power supply
for the consumers [4]. However, PV output shows significant
time and weather dependence [5] and is characterized by
uncertainty and volatility [6]. Due to these identities of PV,
larger local regulation capacity is needed for maintaining the
system balance between power supply-side and demand-side.

With the development of the technologies of communication
and internet of things [7], it is promising to utilize widely
distributed demand-side resources in urban micro-grids to
provide regulation services and accommodate RES, such as
battery energy storage system (BESS), heating, ventilation,
and air conditioning (HVAC), et al [8]. The technology of
BESS has developed rapidly and is applied widely because
of fast response and reliability [9]. Several studies have been
conducted on the energy management of BESS to maximize
profits or satisfy reliability requirements. In [10], an operational
optimization model of BESS considering the degradation is
proposed to determine the residential energy storage capacity,
which improves the return on investment. In [11], several
optimization models of BESS are reviewed and compared.
These studies introduce typical application, sizing, and control
methods of a single BESS, which is not economically efficient
enough. In addition, due to the high cost of BESS and the
limited space in urban areas [12], it is difficult to build a large
capacity of BESS in urban micro-grids.

Since the existing power systems lack BESS [13], dispatch-
ing flexible loads or virtual energy storage systems (e.g., HVAC)
becomes more and more popular in many researches [14], [15].
HVAC systems can play a similar role as BESS in some specific
situations. In [16], Ghasem et al. propose a stochastic-robust
strategy and find that the resiliency of the smart distribution grid
can be improved by integrating flexible loads. In [17], Liu et al.

propose an optimal dispatch strategy to allow HVAC systems
to participate in frequency regulation. In urban micro-grids,
the HVAC systems consume a large amount of energy, and
therefore have great potential to participate in the regulation
of micro-grids [18]. The buildings have the ability to store
heat or cold temporarily, so they can be regarded as a kind
of virtual energy storage systems, which is called building
based energy storage systems (BBESS). in [19]. Modeling and
dispatching the BBESS properly can relieve the pressure of
insufficient capacity of BESS and reduce the requirement for
energy storage configuration. In [20], Nagpal et al. propose a
second-order model for the BBESS and controlled the energy
consumption with local energy management systems, while
it does not consider the interaction with other BESS. In [21],
an accurate model for BBESS is established via EnergyPlus
and is applied in the cost-optimal operation model of smart
buildings, while the model is too complex to be applied in large-
scale problems. Besides, few researches about HVAC systems’
dispatch consider the participation of different markets.

The BESS and BBESS have different characteristics, es-
pecially in the perspectives of capacity scale and duration
time for energy storage. Besides, short-term forecasts on PV
or loads are more accurate than long-term forecasts. To take
advantage of the characteristics of different energy storage
systems and the accurate short-term forecast results, the method
of multi stage optimization can be applied to dispatch BESS
and BBESS coordinately. In [22], Cheng et al. establish a multi-
time scale coordinated optimization framework of energy hub
operation. The model consists of day-ahead optimization, intra-
day optimization, and real-time optimization, whose targets are
minimum operation cost, minimum market cost, and minimum
total adjustment amount separately. In this model, the dramatic
fluctuation of the electricity price in the real-time market is not
considered. In [23], Watari et al. propose a multi-time scale
energy management framework for PV system to schedule
BESS operation and appliance usage, considering a coarse-
grained time scale with 15min resolution and fine-grained time
scale with 1s resolution. The mix of fast and slow system
dynamics reduces electricity costs by 48.1%. In [24], Jani et
al. propose a multi-objective two-stage optimization model
for the operation planning of multi-micro-grids taking account
into flexible loads and uncertain RES. The model can lower
operating costs and reduce carbon emissions, while the load
is modeled simply without consideration of the actual identity.
In [25], a two-stage stochastic optimization model is proposed
for the operation of virtual power plants (VPP), where BESS,
thermal energy storage systems and flexible loads are included.
The model considers the participation in the day-ahead and
real-time market to maximize profit and guarantee the resiliency
of the VPP. Overall, most of the current studies focused on the
multi-time dispatch apply over-simplified flexible load models
such as interruptible or shiftable loads, which cannot consider
the characteristics of specific loads like HVAC.

Considering the shortcomings of the literature, the objective
in this research is to develop a multi-time scale centralized
optimization model considering BESS and BBESS in the PV-
powered urban micro-grids. Firstly, the models of each element
in the urban micro-grids are established and the features
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of BESS and BBESS are compared. After that, multi-time
scale optimization is conducted. The first stage is day-ahead
optimization. Based on the forecasts of the output of PV
and the electricity price of day-ahead market, the micro-grids
operator tries to minimize the operation cost by controlling the
power consumption of BESS and the HVAC systems. Then the
operator submits the power purchase and sale scheme to the
main grid. After the peak-regulation ancillary service market
opens, the operator will decide whether to participate in the
market and how much to provide to maximize the profits. In
the second stage, an intra-day rolling optimization model is
applied to minimize the adjustment amount and the cost in the
real-time market with a more accurate forecast result.

The main contributions of this research can be summarized
below:

(1) A two-stage optimization model is proposed for the
operation of the urban micro-grids considering multi-type
energy storage systems. Different characteristics of BESS and
BBESS are analyzed and considered in the model. They are
dispatched in different time scales based on spot markets and
peak regulation ancillary markets to minimize the operation
cost. By dispatching them coordinately, a larger equivalent
energy storage capacity can be achieved.

(2) In this two-stage optimization model, the day-ahead
optimization model is a mixed-integer linear programming
(MILP) problem, and the intra-day optimization model is a
quadratic programming (QP) problem, which are both easy to
solve with a commercial solver. The intra-day optimization
model can track the dramatic fluctuation of the electricity price
in the real-time market while taking into account the price of
electricity throughout the day.

II. MODELS FOR THE URBAN MICRO-GRIDS

A. Framework of the urban micro-grids

A typical urban micro-grid is shown in Fig. 1. It is connected
to the main grid, consisting of PV generators, BESS, HVAC
systems considered as BBESS, and fixed loads. Due to the
development of the technologies of Internet of Things, it is
technically feasible for energy management systems (EMS) to
obtain the data from the elements and control power generation
and consumption. In the urban micro-grids, the PV can supply
electricity to the consumers, and the BBESS will adjust the
power supply and consumption together with the BESS. The
urban micro-grid will purchase or sell electricity if there is a
shortage or surplus of electricity.

B. System model

In the urban micro-grids, demand and supply balance must
be achieved:

Pbuy,t+PPV,t+Pdis,t = Psell,t+PHVAC,t+Pload,t+Pchar,t

(1)
where Pbuy,t and Psell,t are the power bought from or sold to

the grid at t, respectively; PPV,t is the power generated from PV
at t; PHVAC,t is the power consumption of all HVAC systems
in the urban micro-grids; Pload,t is the power consumption of

HVAC
(BBESS)

Power Flow

Information Flow

Urban microgrids

Grid

PV

BESS

EMS

Fixed loads

Figure 1. The scheme of typical urban micro-grids.

fixed loads at t; and Pchar,t and Pdis,t denote the charging
power and discharging power of BESS at t, respectively.

The urban micro-grids also need to satisfy the following
restrictions:

Pbuy,t ≤ Pbuy,max (2)

Psell,t ≤ Psell,max (3)

where Pbuy,max is the maximum bound of power input from
grid and Psell,max is the maximum bound of power output to
the grid.

C. PV model

The power output of PV is predicted in advance. Denote
P pred
PV,t as the predicted maximum power output of PV at t, and

denote PPV,t as the scheduled power output during operation.
The PV needs to satisfy the restriction:

PPV,t ≤ P pred
PV,t (4)

The PV output needs to be predicted in advance. Let P real
PV,t

be the realistic PV output, and epredPV,t be the relative error of
prediction. It is calculated by:

P pred
PV,t = P real

PV,t(1 + epredPV,t) (5)

In day-ahead stage, the relative prediction error usually
satisfies the Gaussian distribution.

eDA,pred
PV,t ∼ N(0, σ2

DA) (6)

where σDA is the variance of the relative prediction error in
day-ahead stage.

In real-time stage, short-term prediction is executed, and
the prediction error is larger if the time is far from when
the prediction is made. The prediction error is modelled as a
discrete time Markov chain, and is expressed in the following
equation:

eRT,pred
PV,t+1 − eRT,pred

PV,t ∼ N(0, σ2
RT ) (7)

eRT,pred
PV,1 ∼ N(0, σ2

RT,0) (8)
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where σRT,0 is the variance of the relative prediction error of
the first prediction time period; σRT is the common difference
for the variance of the prediction error over time.

D. BESS model

The BESS charges during the low electricity price period or
the period that the micro-grids provide peak-regulation ancillary
service. It switches to the discharging state when the price is
high. During operation, the BESS needs to comply with the
following restrictions:

Pchar,t ≤ τchar,tPchar,max (9)

Pdis,t ≤ τdis,tPdis,max (10)

τchar,t + τdis,t ≤ 1 (11)

Sbat,t+1 = Sbat,t + ηPchar,t∆t− Pdis,t∆t/η (12)

SoCt = Sbat,t/Sbat,r (13)

SoCt ≤ SoCmax (14)

SoCt ≥ SoCmin (15)

Eqs. 9 and 10 imply the power bounds of charging and
discharging, respectively; Pchar,max and Pdis,max are the max-
imum power of charging and discharging of BESS, respectively;
τchar,t and τdis,t are binary variables and shows the state
of BESS. Eqs. 11 shows that BESS cannot be charged and
discharged at the same time. Eqs. 12 and 13 show the level of
stored energy in the BESS; Sbat,t means the energy stored in
BESS at t; Sbat,r is the maximum capacity of BESS; SoCt is
the state of charge (SoC) of BESS; η is the efficiency of BESS.
Eqs. 14 and 15 imply the maximum and minimum SoC bounds
of BESS, respectively. SoCmin and SoCmax are minimum
SoC and maximum SoC of BESS, respectively.

E. BBESS model

Buildings can store heat or cold generated by HVAC systems
and can be considered as BBESS. In [20], Nagpal et al. apply
the following differential equations to describe the thermal
dynamics of BBESS when HVAC systems work at the heating
condition.

CmṪm =
Ti − Tm

Rim
+A · p · ϕm (16)

CiṪi =
Tm − Ti

Rim
+

Ta − Ti

Ria
+ηCOPPHVAC +A · (1−p) ·ϕm

(17)
where Ci and Cm are the heat capacities of indoor air and heat
accumulating medium such as furniture, respectively; Ti, Tm

and Ta are the temperature of indoor air, heat accumulating
medium and environment, respectively. Rim and Ria are the
thermal resistance against heat transfer between indoor air and
heat accumulation medium, and external air, respectively; A is
the effective window area of the building and p is the fraction
of solar irradiance which directly affects Tm; ϕm is the solar
irradiance; ηCOP is the heating coefficient of HVAC systems;
PHVAC is the power consumption of HVAC systems.

Considering the relatively long time resolution (15min or 1h)
in the study, the temperature of indoor air and heat accumulating
medium is almost the same. Suppose the HVAC systems are
working at cooling conditions, the model can be simplified and
discretized as follows:

Ci(Ti,t+1−Ti,t) = (
Ta,t − Ti,t

Ria
−ηEERPHVAC,i,t+Aiϕs,t)∆t

(18)
where ηEER is the cooling coefficient of the HVAC systems;
Ci is the equivalent heat capacities of the ith building and can
be calculated with the following equation.

Ci = γCairρairVi (19)

where Cair is the specific heat capacity of air; ρair and Vi are
the density and volume of air in the room, respectively; γ is
the coefficient to calculate the total capacity considering the
heat accumulating mediums.

Besides, the HVAC systems need to comply with the
following restrictions:

PHVAC,i,t ≤ τHVAC,i,tPHVAC,max (20)

PHVAC,i,t ≥ τHVAC,i,tPHVAC,min (21)

where τHVAC,i,t is the state of the ith HVAC at t as a 0-
1 variable; τHVAC,i,t = 0 means the HVAC system is shut
down and τHVAC,i,t = 1 means the HVAC system is working;
PHVAC,max and PHVAC,min are the maximum and minimum
power of HVAC systems in the operation mode, respectively.

The HVAC systems are supposed to maintain the indoor tem-
perature within the comfortable range. The indoor temperature
needs to comply with these restrictions:

Ti,t ≤ Ti,t,max (22)

Ti,t ≥ Ti,t,min (23)

where Ti,t,max and Ti,t,min are the maximum and minimum
comfortable temperature in the ith building at t, respectively.

F. Comparisons between BESS model and BBESS model

The thermal dynamics of BBESS (Eq. 18) can be altered as
follows:

Si,t+1 − Si,t = PHVAC,i,t∆t− 1

CiRia
Si,t∆t− Pfix,i,t∆t

(24)
where

Si,t = − Ci

ηEER
(Ti,t − Ti,t,max) (25)

Pfix,i =
Ai

ηEER
ϕs,t +

Ta − Ti,t,max

ηEERRia
(26)

Suppose the comfortable temperature range is constant. Eq.
24 has a similar form as Eq. 12. Eq. 24 suggests that the
buildings and HVAC systems can be considered and modelled
as two parts: virtual energy storage systems and fixed loads.
For the part of virtual energy storage system, parameter Si,t

is the energy stored in the energy storage systems, which is
only related to the indoor temperature according to Eq. 25;

1
CiRia

Si,t is the power leakage, with a linear relationship with
Si,t. We define leakage time constant τi = CiRia to show
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Table I
COMPARISON OF CHARACTERISTICS BETWEEN BBESS AND BESS

Parameters BESS BBESS

Energy storage capacity Sbat,r
Ci

ηEER
(Ti,max − Ti,t)

State of charge SoCt
Ti,max−Ti,t

Ti,max−Ti,min

Efficiency η 1

Leakage time constant ∞ CiRia

Day-ahead
prediction

Day-ahead
electricity market

Day-ahead
ancillary market

Real-time
electricity market

Real-time
prediction Operation

DA
stage

RT
stage

Prediction Operational optimization in markets Actual operation

Figure 2. Block diagram of market participation and operation process.

the rate of energy leakage of BBESS. Parameter Pfix can be
considered as fixed loads and is determined by environmental
temperature and solar radiance only according to Eq. 26. Table I
compares the characteristics between the kind of virtual energy
storage systems, BBESS in other words, and BESS.

III. OPTIMIZATION MODEL IN MARKETS

A. Operation process and market model

The profile of the market participation and the operation
process of the studied micro-grids is shown in Fig. 2. On
the day before the operation, the day-ahead predictions of
the output of PV, power consumption of loads, temperature
et al. are conducted. Then, the urban micro-girds participate
in the day-ahead electricity market as price takers. Based on
the information of the prediction and electricity prices, the
day-ahead optimization is carried out to minimize the cost in
the market. After that, the urban micro-grids provide peak-
regulation ancillary service in the day-ahead ancillary market
with flexible resources to get profits. In the day-ahead stage, the
urban micro-grids declare a plan of power purchase and sale,
and get the baseline of power generation and consumption of
each element. In the real-time stage, more accurate predictions
are conducted first. Based on the prediction and the baseline
from the day-ahead stage, the urban micro-grids participate in
the real-time electricity market as a price taker to balance the
load and supply. Besides, the main grid charges transmission
fee for electricity bought by the micro-grid.

The model for the peak regulation ancillary service market
is described as follows:

Denote a tuple Ri = (tstart,i, tend,i, PPR,i, RPR,i) to
represent the ith peak regulation ancillary service. The ancillary
service market is open between tstart,i and tend,i, and the urban
micro-grids need to claim the peak regulation amount PPR,i.
To satisfy the amount, the micro-grids have to increase the
consumption or decrease power generation by PPR,i during
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Figure 3. Optimization and operation process of urban micro-grids.

(tstart,i, tend,i), and earn revenue of RPR,iPPR,i(tend,i −
tstart,i + 1)∆t.

The optimization and operation process are shown in
Fig. 3. In the day-ahead stage, the power generation and
consumption of each element are optimized within 24 hours
with a resolution of 1h. Firstly, an optimization with electricity
market participation only is conducted, and a baseline of
energy generation and consumption is claimed. Then, another
optimization with ancillary service market is executed based
on the baseline. Finally, in the real-time stage, a rolling
optimization is conducted every 15min with a resolution of
15min. In each optimization process, the operation of 4h is
optimized based on the prediction and market price, and only
the result of the first 15min is executed.

B. Day-ahead optimization

1) Participate in the electricity market only: The objective
of the optimization in the day-ahead electricity market is to
minimize the total cost. The objective function can be described
as follows:

min f =
∑
t

CDA
t (PDA,a

buy,t − PDA,a
sell,t ) +

∑
t

CtrPDA,a
buy,t

+β
∑
t,i

|τDA,a
HV AC,i,t+1 − τDA,a

HV AC,i,t| (27)

where CDA
t is the electricity price at t in the day-ahead

electricity market; PDA,a
buy,t and PDA,a

sell,t are the power bought
from or sold to the grid in this step, respectively; Ctr is the
transmission fee charged by the grid; β is the punishment
coefficient of switching on or off the HVAC.

In this stage, time resolution ∆t = 1h and the time period
T = 24. Constrains include Eqs. 1, 2, 3, 4, 9, 10, 11, 12, 13,
14, 15, 18, 20, 21, 22, 23. Besides, the SoC of BESS need to
comply the restriction to guarantee the operation after the day
studied:

SoC0 = SoCT (28)

This optimization is an MILP problem, and can be easily
solved by commercial solvers such as Gurobi.

2) Participate in the ancillary market: The objective of the
optimization in this step is to get revenue from providing peak
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regulation ancillary service and minimize the operation cost.
The objective function is:

min f =
∑
t

CDA
t (PDA

buy,t − PDA
sell,t) +

∑
t

CtrPDA
buy,t

+β
∑
t,i

|τDA
HVAC,i,t+1 − τDA

HVAC,i,t|

−
∑
i

RPR,iPPR,i(tend,i − tstart,i + 1)∆t

(29)

where PDA
buy,t and PDA

sell,t are the power bought from or sold to
grid in this step, respectively.

Constrains include Eqs. 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15,
18, 20, 21, 22, 23, 28. Besides, the following constrains about
peak-regulation service should also be complied:

PDA
buy,t − PDA

sell,t ≥ (PDA,a
buy,t − PDA,a

sell,t + PPR,i)

−(1− τPR,i)Plarge, ∀t ∈ [tstart,i,≤ tend,i] (30)

τPR,iPPR,i,min ≤ PPR,i ≤ τPR,iPPR,i,max (31)

where τPR,i is a binary variable representing whether the urban
micro-grids provide the peak regulation ancillary service. If
τPR,i = 1, the urban micro-grids choose to provide ancillary
service to the grid, and vice versa. Parameter Plarge is a
constant big number to ensure Eq. 30 always satisfies if τPR,i =
0. Eq. 31 imply the power bounds of the ancillary service.
Parameters PPR,i,min and PPR,i,max are the minimum and
maximum power the urban micro-grids can provide ancillary
service of, respectively.

This optimization problem in the ancillary market is an
MILP problem, and can also be easily solved by commercial
solvers.

C. Intra-day rolling optimization

In real-time stage, intra-day rolling optimization is carried
out with time resolution ∆t = 0.25 and the time period T = 16
in each optimization. The objective of each optimization is
to minimize the operation cost in the real-time market, while
minimizing the amount of adjustment to follow the result from
day-ahead stage. The objective function is proposed as follows:

min g =
∑
t

CRT
t ((PRT

buy,t − PDA
buy,t)− (PRT

sell,t − PDA
sell,t))

+ Ctr
∑
t

(PRT
buy,t − PDA

buy,t)

+ a1
∑
t

(PRT
char,t − PDA

char,t)
2

+ a2
∑
t

(PRT
dis,t − PDA

dis,t)
2

+ a3
∑
i,t

(PRT
HV AC,i,t − PDA

HVAC,i,t)
2

+ a4
∑
t

(SRT
bat,t − SDA

bat,t)
2

+ a5
∑
i,t

(TRT
i,t − TDA

i,t )2 (32)

Table II
PARAMETER CONFIGURATION OF THE ELEMENTS IN THE URBAN

MICRO-GRIDS

Facility Parameters/units Values

BESS

Pchar,max/kW 300
Pdis,max/kW 300
Sbat,r/kWh 600
SoCmax 0.9
SoCmin 0.1
η 90%

HVAC systems
in resident rooms

Cr/kJ ·K−1 100*20
Rra/K · kW−1 3.5
ηEER,r 3.3
PHV AC,r,max/kW 2.0
PHV AC,r,min/kW 0.1
Tr,max/◦C 24
Tr,min/

◦C 21.5
nr 600
Ar/m2 1

HVAC systems
in offices

Cw/kJ ·K−1 100*20
Rwa/K · kW−1 3.5
ηEER,w 3.3
PHV AC,w,max/kW 2.0
PHV AC,w,min/kW 0.1
Tw,max/◦C 23
Tw,min/

◦C 21.5
nw 400
Aw/m2 1

where CRT
t is the electricity price at t in the real-time

electricity market. The urban micro-grids need to buy electricity
when there is more demand than that in the day-ahead
markets, and can sell electricity when there is extra supply.
Parameters a1, a2, a3, a4, a5 are the punishment coefficients
of the deviation. These coefficients can be obtained through
typical methods of hyperparameter optimization. Grid search
method is applied in the article. The state of HVAC τHVAC,i,t

in the real-time stage remains the same as the result in the
day-ahead optimization.

Constrains include Eqs. 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15,
18, 20, 21, 22, 23, and

PRT
buy,t − PRT

sell,t ≥ (PDA
buy,t − PDA

sell,t)

−(1− τPR,i)Plarge (33)

Eq. 33 is to guarantee the ancillary service providing. If
τPR,i = 0, the equation always satisfies. The intra-day rolling
optimization can be converted to a QP problem.

IV. CASE STUDY

A. Input data

The urban micro-grids in the case study consist of PV,
BESS, fixed loads, 600 HVAC systems in resident rooms,
and 400 HVAC systems in working offices. Table II shows the
parameters of these elements. The parameters related to HVAC
in resident rooms are described with subscript r, and the param-
eters related to HVAC in offices are described with subscript w.
Each room is set at an area of about 40m2 with γ = 20 [26].
The transmission fee is Ctr = 0.01USD/kWh. The peak
regulation service market can be provided during 11:00-14:00.
The day-ahead prediction error of PV is σDA = 12%, and
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Figure 4. Time-variable parameters. (a) PV output power and power of fixed
load within a typical summer day. (b) Electricity price in day-ahead market
and real-time market. (c) Temperature in a typical summer day.

the parameters for the prediction error of real-time stage is
σRT = σRT,0 = 0.5%. The hyperparameters of the model are
a1 = a2 = 2 × 10−5, a3 = 4 × 10−3, a4 = 4 × 10−6, a5 =
1× 10−3.

Fig. 4 shows the time-variable parameters of the case
study, including the maximum power output of PV, power
consumption of fixed loads, day-ahead and real-time electricity
market price and the environmental temperature of a typical
summer day. The data of electricity prices comes from the
operation data in the PJM market [27], [28].

In the case study, two typical scenarios with several cases
are carried out.

Scenario 1: In the case study, the power bought from or
sold to the grid never exceeds the system limitation, due to the
sufficient infrastructure of substations, transmission lines, and
so on. Pbuy,max and Psell,max are set at a large value. Four
cases are carried out to analyse the effect of regulating BESS
and BBESS.

Scenario 2: Due to the limitation of the substation, stability,
and so on, the power output of the micro-grids is forbidden,
but the power input is guaranteed to ensure power supply. In
this scenario, light curtailment occurs when necessary because
the exceeding PV output cannot be sold. Psell,max = 0, and
Pbuy,max are set at a large amount. Four cases are carried out
the same as scenario 1.

Case 1: Regulate with BESS and BBESS. In this case,
the power generation and consumption of each element is
controlled with the strategies proposed in this paper. The BESS
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Figure 5. SoC of BESS and indoor temperature of buildings. (a) Results in
day-ahead stage. (b) Results in real-time stage.

and BBESS will provide regulation services coordinately.
Case 2: Regulate with BESS only. In this case, the HVAC

systems will try to maintain the indoor temperature at the
upper bound of the comfortable temperature range, which can
be considered as fixed loads. The BESS provide regulation
services individually.

Case 3: Regulate with BBESS only. In this case, there is
no charge and discharge in the BESS, and the HVAC systems
are controlled with the strategies proposed in this paper. Only
BBESS provide regulation services.

Case 4: Without regulation resources. In this case, the HVAC
systems will try to maintain the indoor temperature, and the
BESS doesn’t work. There is no regulation in the micro-grids.

The above models and methods are implemented using
Matlab R2022a with Gurobi Optimizer version 9.5.2, on a
2GHz Intel Core i5 CPU with 16GB RAM. The computation
time of the optimization in the day-ahead stage is less than 2
seconds. The total computation time of the real-time stage is
less than 60 seconds in each case.

B. Result analysis in Scenario 1

1) Results of the operation cost
Table III compares the operational cost and revenue of 30

days in each market in the four cases. Comparing the results of
Case 1 and Case 4, we can find that the coordinated regulation
of BBESS and BESS can reduce the total operational cost
of urban micro-grids by about 20%, the amount of which is
1740 USD. If only BESS is applied as regulation capacity, the
cost can be decreased by 854 USD, while the amount for only
HVAC participation is 769 USD. Therefore, the combination
of BESS and BBESS can reduce the cost by about 8% more
than regulating BESS and BBESS separately. Besides, we
can also find that BESS can reduce day-ahead costs and real-
time electricity costs significantly. BESS can track the day-
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Table III
OPERATION COSTS OF THE URBAN MICRO-GRIDS IN SCENARIO 1

Day-ahead
electricity cost
(USD/month)

Revenue from
ancillary service

(USD/month)

Real-time
electricity cost
(USD/month)

Total cost
(USD/month)

Real-time electricity cost
without optimization

(USD/month)

Case 1: With BBESS and BESS 8785 551 -1184 7050 305
Case 2: With BESS only 8821 360 -525 7936 185
Case 3: With BBESS only 9122 405 -696 8021 377
Case 4: Without BBESS and BESS 8869 0 -79 8790 -79
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Figure 6. Comparison of PV not consumed locally in different cases.

ahead electricity price, store energy at low prices, discharge at
high prices to reduce day-ahead electricity costs, and provide
ancillary services to earn revenue. Also, it can track the real-
time electricity price. BBESS mainly reduce the real-time
electricity cost because buildings can only store energy for a
short time. The power consumption of HVAC can only respond
to the fast fluctuation of electricity prices in the real-time
market.

Table III also compares the real-time electricity cost un-
der optimized and non-optimized conditions to examine the
performance of the proposed rolling optimization method. In
the non-optimized condition, the real-time control strategy
will maintain the SoC of BESS and the indoor temperature
of buildings the same as the results optimized in the day-
ahead stage. It can be found that the real-time electricity cost
decreases a lot in case 1,2 and 3. In case 1, the cost is reduced
by about 1500 USD/month, which shows the efficiency of the
proposed rolling optimization method.
2) Results of the dispatch of BESS and BBESS

Fig. 5 shows the SoC of BESS and the indoor temperature of
the two kinds of buildings in the day-ahead stage and real-time
stage. In the day-ahead stage, the following statements can be
drawn from the figure. The BESS charges at low prices and
discharges at relatively high prices to earn revenue from the
price gap. The BESS also discharges before the peak regulation
period, and charges to provide peak regulation ancillary service
in order to get profits. HVAC systems mainly increase the power
consumption during the period to provide peak regulation

ancillary service. During the period, the indoor temperature
decreases, which can be regarded as the BBESS charge. After
the period, the temperature increases during one hour. It can
be regarded as the BBESS discharge and energy leaks during
the hour. As for the perspective of coordination control, the
BESS charges first, and then BBESS charge to provide as much
ancillary service as possible. The reason for the phenomenon
can be explained as follows: BESS can store energy for a long
time without much leakage, but if BBESS store energy for a
long time, there is too much energy leakage. So BESS charges
first and HVAC systems increase power consumption to avoid
more energy waste.

In real-time stage, the SoC curve is similar to that in the
day-ahead stage, but the indoor temperature curves fluctuate
more frequently and violently. The electricity prices in the
real-time market change frequently, and BBESS can track the
frequent alteration, storing cold when the price decreases and
release the energy stored when the price increases. The BESS
need to track the electricity price change in the whole day, so
the SoC curve of BESS is supposed to change little from the
result of the day-ahead stage. Therefore, scheduling BBESS
in the real-time stage can decrease real-time electricity costs
significantly.

The effectiveness of the proposed model in promoting
renewable energy self-consumption levels is shown in fig. 6.
All electricity generated by PV before 7:00 and after 17:00 is
self-consumed. It can be seen from fig. 6 that the electricity not
consumed during 11:00-13:00 can be reduced substantially by
the coordinated regulation of BESS and BBESS. Without any
coordination, about 1585 kWh electricity cannot be consumed
during the period and is sold to the grid, putting huge peak
pressure to the grid. With the regulation of BESS or BBESS,
the amount of electricity not consumed can be reduced to 391
kWh and 607 kWh, respectively. And with the coordination
regulation, the amount can be reduced to 149 kWh. The midday
peak pressure on the grid can be relieved significantly. In total,
the coordination control can increase the self-consumption rate
of PV from 79% to 87%.
3) Sensitivity analysis

Fig. 7 illustrates the effects of BESS capacity on the
optimization results in scenario 1. The monthly operation costs
of the urban micro-grids are negatively correlated with the
BESS capacity. The costs decrease by 150 USD/month for
every 100kWh increase in BESS capacity. This figure also
shows the effect of BBESS controlling: In case 2 (without
regulation of BBESS), the capacity of BESS is required to
increase by about 75% to achieve the same monthly cost as
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Table IV
OPERATION COSTS AND PV CURTAILMENT RATE OF THE URBAN MICRO-GRIDS IN SCENARIO 2

Day-ahead
electricity cost
(USD/month)

Revenue from
ancillary service

(USD/month)

Real-time
electricity cost
(USD/month)

Total cost
(USD/month)

PV
curtailment rate

Case 1: With BBESS and BESS 10530 0 -895 9635 13.65%
Case 2: With BESS only 10877 0 -342 10535 17.83%
Case 3: With BBESS only 11374 0 -462 10912 16.76%
Case 4: Without BBESS and BESS 11561 0 235 11796 20.28%

Figure 7. Effects of BESS capacity on operation cost in scenario 1.

that in case 1. Coordination control of BESS and BBESS can
reduce the need for energy storage configuration, and thus
saves space in the urban.

C. Result analysis in Scenario 2

1) Results of the operation and dispatch
In scenario 2, extra PV generation need to be curtailed. Table.

IV compares the operation cost and PV curtailment rate of the
four cases. Due to the limitation of PV output to the main-grid,
it is not economic for the micro-grid to provide peak regulation
ancillary service. Therefore, the revenue from ancillary market
is zero in the four cases. The same conclusion as scenario 1
can be drawn in this scenario: coordination control of BESS
and BBESS can maximize the cost reduction. BESS reduce
day-ahead cost and real-time cost while BBESS mainly reduce
real-time electricity cost. In the perspective of PV curtailment,
it can be found that BESS can reduce the PV curtailment rate
by 2.45%, and BBESS can reduce PV curtailment rate by
3.52%. Coordination control of BESS and BBESS can reduce
it by 6.63%.

Fig. 8 shows the power consumption of each elements in
case 1 in this scenario. The purple line ‘base load’ is the
power consumed by fixed loads and HVAC loads in case 4.
When PV capacity is larger than the loads, BESS charges
first to consume extra PV, and then BBESS charges during
the period when PV output is larger than load and there is a
decreasing trend of PV output. When PV capacity is less than
the loads, BBESS discharges first to to satisfy the load demand,
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Figure 8. Power profile of different devices with consideration of BESS and
BBESS in scenario 2.

and then BESS discharges. The reasons can be explained as
follows. It is mentioned in section II-F that the leakage time
constant of BBESS (in the case, the value is 1.94h) is shorter
than that of BESS (considered ∞). BBESS is tend to store
energy for a short time to avoid too much energy leakage.
Therefore, BBESS charges later and discharges at first. The
coordination control of BESS and BBESS can consume extra
PV to promote PV consumption rate, and reduce the amount
of electricity bought to cut the cost. Also, BESS and BBESS
regulate with the change of electricity price. They charges at
low prices and discharges at high prices to reduce electricity
cost.
2) Sensitivity analysis

Fig. 9 illustrates the effect of BESS capacity on the
operation cost and PV curtailment rate in scenario 2. The costs
decrease by about 180 USD/month, and the PV curtailment
rate decrease by 0.5% in average for every 100kWh increase
in BESS capacity. Without regulation of BBESS, the capacity
of BESS is required to increase 900 kWh to achieve the same
PV curtailment rate as that with the regulation of BBESS.
This shows the huge potential of BBESS to promote PV
consumption. In other words, regulation of BBESS can replace
BESS to some extent.

V. CONCLUSIONS

The paper proposes a multi-time scale optimization model
for urban micro-grids to schedule large-scale heterogeneous
BESS and BBESS. In this model, the different characteristics
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Figure 9. Effects of BESS capacity on optimization results in scenario 2

of heterogeneous energy storage systems are considered and
analyzed. On the basis of the present results, several conclusions
can be drawn as follows.

HVAC systems and buildings can be modelled and regarded
as BBESS, which has different characteristics from BESS.
BESS can provide a relatively long time of energy storage.
They can track electricity price alteration in the day-ahead and
real-time electricity market to reduce cost, and provide peak-
regulation ancillary service by turning into charging state to
earn revenue. BBESS can provide a short time energy storage.
They can track the fast electricity price changes in the real-time
electricity market to reduce cost, and provide ancillary service
by increasing power consumption to earn revenue.

Lower operation cost of urban micro-grid and higher self-
consumption rate of PV can be achieved by scheduling BESS
and BBESS coordinately using the method proposed by the
paper, and BBESS shows great potential to replace the demand
for BESS in urban micro-grids. In the case study, the operation
cost can be reduced by about 20% and the self-consumption
rate can increase by about 8%. The dispatch of BBESS is
equivalent to a 75% increase of BESS in urban micro-grids.
Thus, the effectiveness of this model can be proved.
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