Decentralized Demand Response for Energy Hubs in Integrated Electricity and Gas Systems Considering Linepack Flexibility

Sheng Wang, Member, IEEE, Hongxun Hui, Member, IEEE, Yi Ding, Member, IEEE, and Junyi Zhai, Member, IEEE

Abstract—The wide application of energy conversion facilities on the demand side, such as combined heat and power units, has accelerated the integration of multiple energy carriers in the form of Energy Hub (EH). EH can flexibly schedule its electricity and gas consumption patterns to provide demand response (DR) services to the electricity system. However, DR can introduce significant uncertainties in gas demands, posing challenges to the real-time balance of the integrated electricity and gas systems (IEGs). The gas stored in the pipeline (i.e., linepack) is a promising flexible resource to accommodate the gas demand uncertainties during the DR. However, using linepack is challenging due to the complex physical characteristics of gas flow dynamics. This paper proposes a coordinated optimal control framework for both EH and IEGs, focusing on leveraging the linepack flexibility to enhance DR capabilities. Firstly, a multi-level self-scheduling framework for the EH is developed to comprehensively explore the DR potential. The gas flow dynamic constraints are then formulated to ensure that the fluctuating gas demand can be accommodated by the linepack in the IEGS. The second-order cone (SOC) relaxation is adopted to convexify the nonlinearity in the motion equation of gas flow dynamics. To tackle the overall mixed-integer SOC programming problem, an enhanced Benders decomposition strategy that incorporates the lift-and-project cutting plane method is developed, along with a novel solution procedure. The proposed method is validated using the IEEE 24-bus Reliability Test System and the Belgium natural gas transmission system to demonstrate its effectiveness.

Index Terms—energy hub, integrated electricity and gas systems, demand response, self-schedule, gas flow dynamics.

I. INTRODUCTION

WITH the increasing concern for low-carbon development, the coordinated utilization of different energies (e.g., electricity, gas, and heat) has become one of the most appealing ways to promote energy efficiency [1]. On the demand side, different energies are linked through local devices, such as combined heat and power plants (CHP), electric heat pumps (EHP), etc. They consume energy from both electricity and gas systems to satisfy the electricity, heating, and cooling demands of end-users [2]. In response to this trend, the concept of the energy hub (EH) is developed to feature the energy conversion from multiple energy supplies to consumptions [3].

EH not only integrates multiple energies, but also diversifies the path to fulfill energy demands [4]. For instance, the heating demand supplied by the EHP can be covered by increasing the heat production of the CHP, thereby reducing total electricity consumption while increasing gas consumption by the CHP. This trade-off among different energy consumptions, known as energy substitution, can be leveraged to provide demand response (DR) service to the electricity system [5]. Some studies have explored energy substitution-based DR (the comprehensive literature review is listed in Table I). For example, it is used to flexibly supply the electrical, heating, and cooling demands for a building in [6]. Noncooperative game and Nash equilibrium are analyzed in DR considering energy substitutions of multiple EHs in [7]. The joint effect of energy substitution and load elasticity are examined in [8] considering the energy price uncertainties and incentives. A stochastic planning method is formulated as a two-stage optimization problem in [9] to optimize the EH operation and explore DR potential based on energy substitution potentials. Collaborative operations of high-renewable penetrated industrial energy hubs have been proposed, modeling the feasible regions of each device [10]. A block-coordinate-descent robust optimization for incentive-based DR in EH is proposed in [11] against uncertainties. Practical projects, like the test-bed plant in Spain, have further demonstrated the potential of energy substitution in EHs [12]. Compared with traditional DR in electricity systems (e.g., changing the charging/discharging patterns of electric vehicles [13], regulating the on-off statuses of air conditioners [14], etc.), energy substitution in EHs can provide a more seamless experience for end-users [15, 16]. However, there are three main challenges regarding the provision of DR in EHs:

1) Multi-strategy cooperation: Energy substitution is one of several flexible DR strategies available in EHs. Strategies such as temporal load shifting and initiative load curtailment have proven effective in reducing peak loads and flattening load curves in traditional electricity systems [17]. Previous studies have attempted to incorporate these strategies into DR in EHs but often with simplified models. For example, some studies divide energy loads into fixed, interrupted, and adjusted loads, where the adjusted load is regulated by changing the setting temperature of thermal-controlled loads [18]. The cooperation strategy between CHP and curtable air condition loads has been investigated [19]. Flexible energy loads are classified as primary and deferrable loads, but the latter does not need to be
recovered mandatorily [20]. The load shifting process in [21] only forces the balance of shift-out and shift-in loads within a long period, while the real-time balance and time-interdependency in the load shifting are not considered.

In summary, Existing temporal load-shifting models cannot capture the time interdependency of load-shifting processes accurately. Furthermore, the full potential of DR using cooperative multi-strategy approaches remains untapped. However, incorporating time-dependent temporal load shifting increases the computational complexity of the EH scheduling problem, necessitating efficient modeling and solution methodologies.

2) Multi-system coordination: Generally, multiple EHs can exist at different locations on the demand side, consuming electricity and gas from integrated electricity and gas systems (IEGS) to meet their energy demands. During DR, energy substitution in EHs may lead to a spike in gas demand, which could impact the normal operation of the gas system [22]. Linepack, the gas stored in pipelines, represents a flexible resource that can accommodate gas demand spikes during DR due to its accessibility and quick response [23]. Previous studies have addressed the coordination of EHs and IEGS using steady-state gas flow models. For example, the probabilistic energy flow of IEGS with renewable-based EH is investigated in [24]. An optimal operation of electricity, natural gas, and heat systems considering integrated DR and diversified storage devices is developed in [25]. The uncertainties of renewable energies and electricity/gas demand are incorporated in [26] in a stochastic day-ahead scheduling framework. The day-ahead market framework is further considered in [27] and modeled as a mixed integer nonlinear programming problem. A distributed planning model of IEGS and EHs is proposed in [28] in the long term.

However, existing steady-state gas flow-based frameworks fail to fully utilize the flexibilities offered by linepack during DR. Some studies have investigated the linepack utilization for optimal dispatch [29] and resilience management [30], etc., but its application in DR and the coordination with EHs remains unexplored. Modeling linepack usage requires adherence to the physical laws of gas flow dynamics, which are highly time-dependent [31]. Thus, coordinating linepack and EH scheduling during real-time DR poses significant challenges, necessitating a new framework for enhanced coordination.

3) Problem tractability: As aforementioned, Incorporating various DR strategies and gas flow dynamics into the optimization of IEGS and EHs creates a large-scale, time-dependent, and nonlinear optimal control problem. These characteristics make traditional centralized solution methods less efficient or robust. In previous research, where coordination problems were typically time-independent and of smaller scale, centralized solution methods sufficed. For example, some studies retained the nonlinear form of the optimization problem and solved it using solvers like IPOPT [25] or heuristic algorithms [32]. Others convexified the problem by linearizing the quadric term of gas flow equations around the normal operating point [33]. Piecewise linearization and second-order cone relaxation techniques were also employed [34][35]. While a few studies adopted decentralized solution methods for the joint dispatch of IEGS and EHs, they were found to be less efficient than traditional centralized methods [36].

In summary, previous studies primarily focused on energy substitution strategies and steady-state gas flow models in EHs and IEGS, respectively, which did not fully address the scale and time interdependency challenges encountered in DR optimization models. Consequently, existing solution methods cannot be directly applied to the proposed DR problem, necessitating a new solution strategy.

To address the above research gaps, this paper proposes a decentralized DR framework for IEGS and EHs. The contributions are summarized as follows:

1) A multi-level self-scheduling model for the EH is proposed to exploit DR potential. Compared with previous studies, the proposed model can cooperate the energy substitution, load shifting, and initiative load curtailment strategies. By employing the McCormick envelope, the time interdependency in load shifting is characterized more accurately and tractably.

2) A coordinated optimal control framework of the IEGS and EHs is proposed for providing DR service. Compared with the traditional steady-state-based framework, this approach leverages linepack flexibilities to accommodate gas demand spikes during DR. The SOC relaxation is tailored to convexity the gas flow dynamic equations, so that it can be addressed by
off-the-shelf solvers.

3) An enhanced Benders decomposition is developed to solve the coordinated optimal control problem in a decentralized manner to protect privacy. The Lift-and-project (L&P) cutting plane method is embedded to handle integer variables in subproblems. Additionally, a novel solution procedure is designed, leveraging the multi-level structure of the EH self-scheduling problem to enhance computational efficiency.

II. STRUCTURE OF THE IEGS AND EHS

The structure of the IEGS and EHS is presented in Fig. 1. It contains two systems, i.e., the physical system and the information & communication system (ICT). The physical system is further divided into the transmission side and the demand side. On the transmission side, the IEGS transports the electricity and gas from generating units (such as gas-fired generating units and traditional fossil units) and gas sources (such as gas wells and storages) to the demand side, respectively. The gas-fired generating unit (GFU) consumes gas to generate electricity, acting as a crucial link between the gas and electricity systems [38]. On the demand side, districts such as the campus, industrial park, and buildings, can be modeled as EHs [39]. In this paper, a typical configuration of the EH is considered, including the CHP, gas boiler (GBL), EHP, and absorption chiller (ACL).

In addition to the physical system, an ICT-based cloud-edge...
are the electricity and gas consumptions of B, CE to provide DR service in a globally optimal manner.

Therefore, considering the physical interaction gas demand spike by lowering the gas pressure within the linepack in the gas pipeline can temporarily accommodate the effect, effectively reduces electricity demand, although it may lead to load shifting, and load curtailment, are implemented at different period. Self-scheduling strategies, such as energy substitution, scheduling to provide the required DR service for the specified instructions, EHs implement multi-level self-scheduling. Furthermore, essential EH information is shared with the cloud layer to make centralized and globally optimal decisions. The cloud servers gather information and dispatch EHs as well as supply-side resources such as generators. It is important to note that due to the decentralized control framework, only minimal information is exchanged to preserve privacy.

Fig. 1 and Fig. 2 jointly depict the implementation process of DR. During operation, DR instructions, including the electricity reduction period and capacity, are broadcast to each EH. Based on these instructions, EHs implement multi-level self-scheduling to provide the required DR service for the specified period. Self-scheduling strategies, such as energy substitution, load shifting, and load curtailment, are implemented at different time intervals, as shown in Fig. 2. The self-scheduling of EHs effectively reduces electricity demand, although it may lead to a significant increase in gas demand. To address this, the linepack in the gas pipeline can temporarily accommodate the gas demand spike by lowering the gas pressure within the secure range. Therefore, considering the physical interaction between IEGS and EHs, a coordination framework is essential to provide DR service in a globally optimal manner.

III. MULTI-LEVEL SELF-SCHEDULING MODEL OF THE EH

The operating schedule of the EH is typically determined in the day-ahead to satisfy the forecasted electricity, heating, and cooling loads. The DR instruction can be broadcast to the EH either in the day-ahead or during intraday operation. Upon receiving the instruction, the EH implements a self-scheduling strategy to adjust its operating conditions and fulfill the DR requirements [43]. Therefore, both day-ahead scheduling and intraday self-scheduling are studied in this section.

A. Optimal Scheduling of the EH in the Day-Ahead

The objective of the optimal scheduling in the day-ahead is to minimize the energy purchasing cost C_{EH} on an hourly basis:

$$\text{Min } C_{EH} = \rho^e \times e^m + \rho^g \times g^m$$ \hspace{1cm} (1)

where e^m and g^m are the electricity and gas consumptions of the EH, respectively; ρ^e and ρ^g are the nodal electricity and gas prices, respectively, which can be obtained as constants by solving the optimal economic dispatch problem of IEGS in the day-ahead with forecast electricity and gas loads [44].

The objective function is subject to:

1) Energy conversion equations

The following equations characterize the energy conversion relations between the state variables (including electricity and gas consumption, and energy output of devices $x^d = [g_{p1}, g_{p2}, e_1, e_2, e_3, e_4, h_b, h_d, c_b, c_d, c_e, h_b, c_e]$, as marked in Fig. 1) and energy loads in the EH:

$$\begin{align*}
H_{11} x^{in} + g^{in} x^m &= [d^{el}, d^{ht}, d^{cl}, 0_{1\times8}]^T \\
x^{el} &\geq 0
\end{align*}$$ \hspace{1cm} (2)

where H is the sparse energy conversion matrix, whose form can be found in Appendix: el, ht, and cl represent the energy types of electricity, heat, and cooling, respectively; d^{el}, d^{ht}, and d^{cl} are the electricity, heat, and cooling loads of the EH, respectively. For example, the ACL constraint in (2) can be written as:

$$(h_{b\downarrow} + h_{d\downarrow})COP_{b\downarrow} - c_{k\downarrow} = 0$$ \hspace{1cm} (4)

It means that by consuming the heat energies from CHP $h_{b\downarrow}$ and GBL $h_{d\downarrow}$, the ACL can provide $c_{k\downarrow}$ cooling energy to the cooling load at the efficiency of $COP_{b\downarrow}$.

2) CHP constraints

The electricity generation and heat production of the CHP have interdependencies. The feasible region of the CHP can be represented by a convex quadrangle area, as shown in the left half of Fig. 3 [10]. A, B, C, and D are the four extreme points that define the quadrangle. Their coordinates of heat production and heating/cooling capacities of GBL, EHP, and ACL, respectively; $h_{b\downarrow}$, $h_{d\downarrow}$, and $h_{e\downarrow}$ are the heating/cooling outputs of GBL, EHP, and ACL are subject to the minimum outputs and maximum capacities of these devices, as shown in the right half of Fig. 3.

$$\begin{align*}
h_{b\downarrow} + h_{d\downarrow} &\geq 0 \\
e_1 + e_2 - E_{b\downarrow} - \frac{E_{b\downarrow} - E_{h\downarrow}}{(H_{b\downarrow} - H_{h\downarrow})(h_{b\downarrow} + h_{d\downarrow})} &\leq 0 \\
e_1 + e_2 - E_{b\downarrow} - \frac{E_{b\downarrow} - E_{c\downarrow}}{(H_{b\downarrow} - H_{c\downarrow})(h_{b\downarrow} + h_{c\downarrow} - h_{d\downarrow})} &\geq 0 \\
e_1 + e_2 - E_{d\downarrow} - \frac{E_{c\downarrow} - E_{d\downarrow}}{(H_{c\downarrow} - H_{d\downarrow})(h_{b\downarrow} + h_{d\downarrow})} &\geq 0
\end{align*}$$ \hspace{1cm} (5)-(8)

3) GBL, EHP, and ACL constraints

The heat/cooling outputs of GBL, EHP, and ACL are subject to the minimum outputs and maximum capacities of these devices, as shown in the right half of Fig. 3.

$$\begin{align*}
h_{e\downarrow} &\leq h_{b\downarrow} + h_{d\downarrow} \leq h_{e\downarrow}^* \\
c_{o\downarrow} &\leq c_{e\downarrow} \leq c_{o\downarrow}^* \\
(1 - \gamma) c_{o\downarrow} &\leq c_{h\downarrow} \leq \gamma h_{e\downarrow} \\
(1 - (1 - \gamma)) c_{o\downarrow} &\leq c_{h\downarrow} \leq (1 - (1 - \gamma)) c_{o\downarrow}^*
\end{align*}$$ \hspace{1cm} (9)-(12)

where $h_{e\downarrow}^*$, $h_{o\downarrow}$, $c_{o\downarrow}^*$, and $c_{o\downarrow}$ are the heating/cooling capacities of GBL, EHP, and ACL, respectively; $h_{e\downarrow}^*$, $h_{o\downarrow}$, $c_{o\downarrow}^*$, and $c_{o\downarrow}$ are the minimum heating/cooling outputs of...
these devices, respectively; \(\gamma \) is the indicator for EHP operating mode, where \(\gamma = 1 \) represents heating mode, and \(\gamma = 0 \) represents cooling mode.

The optimal schedule in the day-ahead should be formulated for each EH in each hour. Denote the solutions for the \(n \)-th EH in the \(h \)-th hour as \(S_{n,h}^{a}, B_{n,h}^{a}, X_{n,h}^{a} \).

B. Multi-Level Self-Scheduling of the EH in the Intraday

During the intraday operation, the EH can implement the multi-level self-scheduling strategy to provide DR capacity, namely, energy substitution, temporal load shifting, and load curtailment, as illustrated in Fig. 4. From the first to the third level strategy, the EH can provide more DR capacity, but the cost will be higher. The three strategies are elaborated as follows:

1) **First-level strategy: energy substitution**

Energy substitution is to provide DR capacity by changing the operating point of the devices in the EH, as shown in the first figure in Fig. 4. In this strategy, the interruption to the energy loads can be minimized. The specific strategy can take different forms. For example, a) increase the electricity generation of CHP by consuming more gas or by reducing its heat production; b) decrease the heat production of EHP, and increase the heat production of GBL if it is winter. By implementing these strategies, the electricity consumption of EH can be reduced, and the DR capacity can be provided.

The control variables of the energy substitution include the electricity consumption \(e^{a} \), the gas consumption \(g^{a} \), and the state variables \(x^{a} \) of the EH. Apart from the same constraints (2)-(12) in the day-ahead scheduling, energy substitution should consider the DR capacity requirement. As shown in the bottom half of Fig. 2, the yellow line represents the electricity consumption of the EH in the day-ahead schedule \(e_{n,k}^{a} \). During the DR period \(K \), the requirement of DR capacity for each EH \(n \) in each time period \(k \) (i.e., \(ER_{n,k}^{a} \)) is instructed by the system operator. Then, the electricity consumption of the EH after the DR in the intraday (i.e., \(e_{n,k}^{a} \)) should be lower than the green line:

\[
E_{n,k}^{a} \leq e_{n,k}^{a} - ER_{n,k}^{a}, k \in K
\]

2) **Second-level strategy: temporal load shifting**

Temporal load shifting is to shift the energy loads among time periods to adjust the load curves, and thus reduce the electricity consumption at a given time period to provide DR capacity. For example, as presented in the second figure in Fig. 4, the electricity load \(S_{l,k}^{s} \) at time period \(k_{1} \) and the electricity load \(S_{l,k}^{s} \) at time period \(k_{2} \) are shifted to time period \(k_{3} \). By this means, the DR capacity can be provided at time period \(k_{1} \) and \(k_{2} \), while causing certain delays to the energy loads. This temporal load shifting can also take various forms in practice. For example, industrial users can rearrange their production plan, or residential users can reschedule their household appliances.

The temporal load shifting can be divided into two subprocesses, shift-out, and shift-in. The shift-out process is implemented in the electricity reduction period \(KD \), as marked in Fig. 2. The available period for shifting-in \(KN \) \((KN = K - KD)\) should coincide with the users’ preferences. For example, the shifted-out tasks (e.g., production plan) must be completed before the off-work time (e.g., 17:00). Then the latest time for shifting-in will be 17:00. Moreover, the duration for completing the tasks should be limited within \(SW_{l,k}^{s} \). Thus, the whole temporal load-shifting process can be described as:

\[
\sum_{k \in KN} SW_{l,k}^{s} = SW_{l,k}^{s}, \forall k \in KD, SW_{l,k}^{s} \in \{0,1\}
\]

\[
S_{l,k}^{s} = \sum_{k \in KN} SW_{l,k}^{s} s_{l,k}^{s}, k \in KD
\]

\[
0 \leq s_{l,k}^{s} \leq S_{l,k}^{s}
\]

\[
0 \leq S_{l,k}^{s} \leq \kappa_{l,k}^{s} d_{l,k}^{s}
\]

where \(S_{l,k}^{s} \) is a binary variable denoting whether the load of energy type \(l \) in period \(k \) is deployed to \(k^{*} \); \(S_{l,k}^{s} \) is the quantity of the shifted-out load of energy type \(l \) in period \(k \); \(s_{l,k}^{s} \) is the quantity of the energy load \(l \) shifted from period \(k \) to \(k^{*} \); \(\kappa_{l,k}^{s} \) is the maximum proportion of the shiftable load for energy type \(l \).

Compared with the first-level strategy, temporal load shifting can lead to external economic losses, for it causes temporary interruption to energy loads. The economic loss of the whole temporal load shifting depends on three factors: the quantity of shifted load, the time interval between the shift-out and shift-in subprocesses, and the unit cost for load interruption. The relation between the last two factors can be quantified using customer damage functions [45]. The customer damage function is widely used and validated to be effective in
electricity system planning, operation, etc. Based on the customer damage function of the electricity load, the customer damage functions of other types of energy loads can also be derived [46]. Therefore, the cost of the temporal load shifting can be calculated as:

$$C^{vol} = \sum_{k=0}^{K-1} \sum_{i \in KN} \sum_{l \in [k, k]} s^{\text{vol}}_{i,k} \cdot CDF^{i}(k-k')$$

(18)

where CDF^{i} is the customer damage function for energy type i.

3) Third-level strategy: load curtailment

If the shifted-out load in the second-level strategy cannot be redeployed within the same day, or has never been redeployed, then it can be regarded as a load curtailment. As shown in the third figure in Fig.4, the electricity load L_{e}^{l} is curtailed at time period k. Then, the DR capacity can be provided at time period $k+2$.

During the load curtailment, the curtailed load of energy type l in period k is denoted as $L_{c}^{l,k}$. Then, it should be limited within the given boundaries:

$$0 \leq L_{c}^{l,k} \leq \kappa_{l}^{i} \cdot d_{l}^{k}$$

(19)

where κ_{l}^{i} is the maximum proportion of the curtable load of energy type l. Moreover, the customer damage function is also used to calculate the cost:

$$C^{vol} = \sum_{k=0}^{K-1} \sum_{i \in KN} \sum_{l \in [k, k]} L_{c}^{l,k} \cdot CDF^{i}$$

(20)

Summarizing all three strategies, we find that only the second strategy (i.e., temporal load shifting) is time-dependent. For example, if the load at the current time period k' is shifted into another period k, the load at the period k will be increased. Then, the original load d_{l}^{k} should be updated to load \hat{d}_{l}^{k}:

$$\hat{d}_{l}^{k} = \begin{cases} d_{l}^{k} - s_{l}^{k} - c_{l}^{k}, & k \in KD \\ d_{l}^{k} + \sum_{k=0}^{K-1} s_{l}^{k,k} \cdot s_{l}^{k,k}, & k \in KN \end{cases}$$

(21)

which should also meet the constraints (2)-(12).

The formulation of the above self-scheduling strategy will be integrated into the optimization model in Section V. However, the bilinear terms in (15) will lead to a mixed-integer nonlinear programming problem. Solving mixed-integer nonlinear programming problems is extremely time-consuming and has no off-the-shelf reliable solvers. By using the McCormick envelope, we introduce an auxiliary variable $\chi_{l,k}^{i,k} = s_{l}^{k,k} \cdot s_{l}^{k,k}$ to eliminate the bilinear terms [47]:

$$0 \leq \chi_{l,k}^{i,k} \leq s_{l}^{k,k} \cdot \kappa_{l}^{i} \cdot d_{l}^{k}$$

(22)

$$\chi_{l,k}^{i,k} \leq s_{l}^{k,k}$$

(23)

$$s_{l}^{k,k} \cdot \kappa_{l}^{i} d_{l}^{k} (1 - s_{l}^{k,k}) \leq \chi_{l,k}^{i,k} \leq \kappa_{l}^{i} d_{l}^{k}$$

(24)

IV. IEGS MODEL CONSIDERING LINEPACK FLEXIBILITIES

The self-scheduling strategy for EHs may lead to temporary spikes in the gas demands of IEGS. Unlike the electricity system that needs real-time balance, the spikes in gas demands can be covered by the gas stored in the transmission pipeline, which is also known as the linepack [22]. However, excessive abuse of linepacks could lower the pressure on adjacent gas buses and threaten the normal operation of the IEGS. To address this issue, this section first introduces the optimal day-ahead scheduling of IEGS to calculate the IEGS status, which can be further used to evaluate the available linepack. Then, the gas flow dynamics are modeled to ensure the security of IEGS after utilizing the linepack during the intraday DR.

A. Optimal Scheduling of IEGS in the Day-Ahead

The optimal scheduling of the IEGS is implemented on an hourly basis. The objective is to minimize the operating costs:

$$\min_{w_{i}, s_{i,j}, h_{i,j}} C^{\text{IEGS}} = \sum_{i \in \text{EGs}} \rho_{i}^{E} w_{i} + \sum_{i \in \text{GB}} \sum_{j \in \text{NG}} f^{\text{fuel}}_{i,j} (g_{i,j})$$

(25)

s.t.

$$w_{i} \leq w_{i}^{'},$$

$$g_{i,j} \leq g_{i,j}^{*} \leq g_{i,j}^{'},$$

$$g_{i,j}^{\text{fuel}} \leq g_{i,j}^{\text{fuel}} \leq g_{i,j}^{\text{fuel}}^{'},$$

$$w_{i} - q_{i} - \sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} - \sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} - \sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} - \sum_{j \in \text{NG}} q_{i} = 0,$$

$$\sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} + \sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} - \sum_{j \in \text{NG}} g_{i,j}^{\text{fuel}} - \sum_{j \in \text{NG}} f_{i,j} = 0,$$

$$q_{i} = C_{i} \cdot \text{sgn}(p_{i} - p_{j}) \sqrt{p_{i}^{2} - p_{j}^{2}},$$

$$f_{i,j} = (\theta_{i} - \theta_{j}) / X_{i,j},$$

$$|f_{i,j}| \leq f_{i,j}^{'},$$

$$|q_{i}| \leq q_{i}^{'},$$

(26)-(34)

where C^{IEGS} is the operating cost of IEGS; ρ_{i}^{E} is the gas purchasing price; w_{i} is the gas production at bus i; $g_{i,j}$ is the electricity generation of traditional fossil generating units (not gas-fueled) j at bus i; $f_{i,j}^{\text{fuel}}$ is the generation cost function for traditional fossil generating units; EGs and GB are the sets of electricity and gas buses, respectively; NG and NG^{fuel} are the sets of traditional fossil generating units and GFU at bus i, respectively; q_{i}^{fuel} and e_{i}^{fuel} are the gas and electricity demands excluding EHs, respectively; $\zeta_{i,j}$ is the efficiency of the GFU; EH is the set of EHs at bus i; Ω_{i} and Ω_{j} are the sets of electricity branches and gas pipelines connected to bus i, respectively; $f_{i,j}$ and q_{i} are the electricity and gas flows from bus i to j, respectively; θ_{i} is the phase angle; $X_{i,j}$ is the reactance of the branch; C_{i} is a characteristic parameter of the pipeline, which depends on the length, absolute rugosity, and some other properties [48]; $\text{sgn}(x)$ is the signum function, where $\text{sgn}(x) = 1$ if $x \geq 0$, and $\text{sgn}(x) = -1$ if $x < 0$.

Denote the solution of this problem at h-th hour as $Y_{h} = \left[w_{i,h}, g_{i,j,h}, g_{i,j,h}^{\text{fuel}} \right]$. Denote the solution of nodal gas pressure at bus i as $p_{i,h}$. Denote the nodal electricity and gas prices as ρ_{i}^{E} and ρ_{i}^{fuel} at bus i, respectively.

B. Modelling of Gas Flow Dynamics for the Linepack Utilization in the Intraday

To ensure the security of linepack utilization during the DR, the gas flow dynamics are modeled. The gas flow dynamics in a pipeline are governed by two partial derivative equations (PDE), namely continuity and motion equations [49]:

$$\rho_{i} B_{i} \partial_{q_{i}} + A_{i} q_{i} = 0$$

(35)
\[
\partial_p + \rho_0 \partial_q, q + \frac{2 \rho_0^2 B^2 A}{F^2 D A' p} q |q| = 0 \tag{36}
\]
where \(B \) is the isothermal wave speed of gas; \(\rho_0 \) is the gas density at the standard temperature and pressure; \(A \) is the cross-sectional area of the pipeline; \(D \) is the diameter of the pipeline; \(F \) is the Fanning transmission factor.

The derivative regarding the time domain has little influence on the accuracy of (36), especially in the transmission pipelines with relatively steady flow rates and large capacities [50]. The above PDEs for the pipeline from bus \(i \) to \(j \) (the notation \(ij \) is omitted) can be discretized using the Wendroff formula [49]:

\[
\Delta x A (p_{m, i, j} + p_{m, j, i} - p_{m, i} - p_{m, j}) + \Delta t \rho_0 B^2 (q_{m, i, j} - q_{m, j, i} + q_{m, j} - q_{m, i}) = 0
\tag{37}
\]

\[
(p_{m, i, j} + p_{m, j, i})^2 - (p_{m, i} + p_{m, j})^2 + \frac{\Delta x \rho_0 B^2}{F^2 D A} (q_{m, i, j} + q_{m, j, i} + q_{m, j} + q_{m, i})^2 = 0
\tag{38}
\]

where \(\Delta x \) and \(\Delta t \) are the step sizes in length and time domains, respectively; \(m \) is the index of pipeline segments; \(\Gamma = \text{sgn}(q_{ij}) \) represents the direction of the gas flow in the day-ahead.

Assume the gas flow does not change direction during the DR period [51]. Then, (38) can be further relaxed into SOC constraints:

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{p_{m, i, j} + p_{m, j, i}}{\rho_0 B \sqrt{\Delta x / D}} (q_{m, i, j}) \leq p_{m, i} + p_{m, j}, \Gamma = 1 \\
q_{m, i} + q_{m, j, i} + q_{m, j} \geq 0 \\
\frac{p_{m, i, j} + p_{m, j, i}}{\rho_0 B \sqrt{\Delta x / D}} (q_{m, i, j}) \leq p_{m, i} + p_{m, j}, \Gamma = -1 \\
q_{m, i} + q_{m, j, i} + q_{m, j} \geq 0
\end{array} \right.
\tag{39}
\]

where penalty factor methods and sequential programming techniques can be used to drive the above relaxation tight [36].

Nodal gas pressure is the main factor that limits the utilization of linepack, which should be controlled within the secure limits during the DR period as (40). After formulating the dynamic equations for all the pipelines, the initial conditions for those PDEs are specified as (41) and (42). For a set of connected pipelines, the boundary conditions are specified as (43) and (44):

\[
p_i \leq p_i(x, t) \leq p_i^* \tag{40}
\]

\[
p_{\text{eq}} \bigg|_{t=0} = \frac{1}{C_h} \sqrt{\frac{p_i^* - \text{sgn}(p_i - p_i^*) q_{ij}^* \Delta x}{L_j}} \tag{41}
\]

\[
q_{\text{eq}} \bigg|_{t=0} = q_{ij}^* \tag{42}
\]

\[
\begin{align*}
p_{ij} \bigg|_{t=0} = p_{ij}^* (\forall j_i \in \Omega^f) \\
p_{ij} \bigg|_{t=0} = p_{ij}^* (\forall j_i \in \Omega^g)
\end{align*}
\tag{43}
\]

\[
\begin{align*}
W_{ij}^* - q_{ij}^* - \sum_{n \in \text{NG}} g_n^* \sum_{l \in \text{NP}} q_l \bigg|_{t=0} \leq 0 \\
\end{align*}
\tag{44}
\]

where \(L_j \) is the length of the pipeline from bus \(i \) to bus \(j \).

V. COORDINATED OPTIMAL CONTROL OF IEGS AND EHS

A. Formulation of the Coordinated Optimal Control Problem

As shown in Sections III and IV, the operating conditions of EHS are tightly coupled with IEGS. Hence, a coordinated optimal control of IEGS and EHSs is required. The objective is to minimize the total cost \(C^f \):

\[
\begin{align*}
Min \quad & C^f = C^f + \sum_{k \in \text{EH}} (C_{\text{E}}^f + C_{\text{E}}^g) \\
& + \sum_{k \in \text{EH}} \left[\sum_{i \in \text{EH}} \left(\sum_{j \in \text{EH}} f_{ij}^f (g_{ij, k}) \right) \right] \\
\end{align*}
\tag{45}
\]

\[
C^f = \sum_{k \in \text{EH}} \left(\sum_{j \in \text{EH}} \left(\sum_{i \in \text{EH}} f_{ij}^f (g_{ij, k}) \right) \right) \\
+ \sum_{k \in \text{EH}} \left(\sum_{i \in \text{EH}} \left(\sum_{j \in \text{EH}} f_{ij}^g (g_{ij, k}) \right) \right) \tag{46}
\]

where \(C^f \) is the energy cost; \(C_{\text{E}}^f \) and \(C_{\text{E}}^g \) are the costs of the temporal load shifting and load curtailment of \(n \)-th EH, respectively; \(x_{ij} = [x_{ij}^f, x_{ij}^g, x_{ij}^d, x_{ij}^e] \) is the set of control variables of \(n \)-th EH in period \(k \); \(x_{ij} = [x_{ij}^f, x_{ij}^g, x_{ij}^d, x_{ij}^e] \), \(\forall j' \in \text{KN} \); \(x_{ij} = \text{le}_i^* \). The optimization model is subject to:

1) EH operating constraints: (2)-(13). The load on the right-hand side of (2) should be replaced by the updated load \(\text{le}_i^* \) as calculated in (21).

2) EH self-scheduling constraints: (14)-(24). Both EH operating and self-scheduling constraints should be formulated for all the EHs and all the time periods.

3) IEGS operating constraints: a) constraints for the gas system (37), (39)-(44), which should be formulated for all the pipelines at all the time periods; b) constraints for the electricity system (30), (32), and (33), which should also be formulated for all the periods; c) other trivial constraints (26), (27), and (34).

B. Decentralized Solution Methodology

The IEGS and each EH generally belong to different entities and have their own regulations. To preserve their data privacies, these entities do not intend to share their system parameters [52]. Therefore, a decentralized solution strategy based on Benders decomposition is proposed.

First, through reformulating the nonlinear constraints in the optimization models in (22)-(24) and (39), the original complex problem has been preliminarily simplified into a mixed-integer SOC programming problem. Then, considering the mathematical models of the IEGS and EHSs are only linked via the electricity and gas consumptions, the decomposed structure is developed. The original optimization problem is decomposed into an IEGS optimal control problem (i.e., the master problem (MP)) and several EH self-scheduling subproblems (SP). They are handled by edge and cloud computation resources, respectively. Each EH solves the subproblem individually. For privacy preservation, only the total electricity and gas consumptions and dual variables, are required to be sent to the cloud server. Thus, the detailed physical parameters of EH devices, such as the capacity of the CHP, do not have to be revealed. After the cloud server solves the master problem, it

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <
will pass additional constraints to the EHs. EH will repeat the solution process of subproblems again before it converges, and thus completes our proposed decentralized Benders decomposition algorithm.

Due to the integer variables in the SPs, the Benders decomposition cannot be adopted straightforwardly. Therefore, it is enhanced by embedding the lift-and-project (L&P) cutting plane method into the SPs, so that they can be convexified. However, introducing the L&P cuts will increase the computation burden on solving the SPs. To address this issue, the enhanced Benders decomposition procedure is improved by further splitting the EH self-scheduling SP into two SPs: i) energy substitution SP; and ii) load shifting-curtailing SP. The detailed solution procedure is presented in Fig. 5, which is also elaborated as follows:

1) Initialization
Set the upper bound $UB^{(0)}$, lower bound $LB^{(0)}$, and tolerance δ for the enhanced Benders decomposition.

2) Solve the MP

\[
\min_{\mathbf{y}} \mathbf{c}^T \mathbf{y} + \sum_{n \in \text{EH}} \psi_n
\]

where $\mathbf{y} = [p_{i,j,k}^{(1)}, q_{i,j,k}^{(1)}, g_{i,j,k}^{(1)}, e_{i,j,k}^{(1)}, g_{i,j,k}^{(2)}, \mathbf{y}_n]$. The MP is subject to (13), (27), (32), (33), (37), (39)-(44), and the Benders cuts from the SPs. The Benders cuts are initialized with $\psi_n \geq 0$, and are further supplemented by steps 4-6.

Denote the solution of MP in the s-th iteration as $\hat{\mathbf{y}}^{(s)}$, and the value of the objective function as $\psi^{(s)}$. Update $LB^{(s)} = \max\{LB^{(s-1)}, \psi^{(s)}\}$.

3) Check the feasibility of the relaxed SP

The following relaxed SP for each EH is formulated and solved in parallel, given the solutions $e_{m,k}$ and $g_{m,k}$ from MP:

\[
\min_{\mathbf{x}_{n,k}} \mathbf{c}^T \mathbf{x}_{n,k} + \sum_{m \in \text{EH}} \psi_m
\]

which subject to (2)-(24). The integer variables in (14) are relaxed into:

\[
0 \leq s_{w,k} \leq 1, s_{w,k} \in \mathbb{R}
\]

The relaxed SP is a linear programming problem, which can be easily checked for feasibility. If infeasible, go to step 4. Otherwise, obtain the solution $\hat{\mathbf{x}}^{(s)}$, and go to step 5.

4) Add feasibility cut to the MP

Get the Farkas dual variables λ of each relaxed SP. Denote the constraints of the SP in a compact form:

\[
\hat{\mathbf{A}}^{(s)}\mathbf{x} - \mathbf{g}^{(s)} \leq \mathbf{b}
\]

where $\hat{\mathbf{A}} = [A_{m,n} | A_{m,n} | A_{m,n}]$. Then, the following feasibility cut (44) is provided to the MP. Go to step 2 to start the next Benders iteration.

\[
\lambda[A_{m,n} A_{m,n}][e^{(s)} g^{(s)}] \leq \mathbf{b}
\]

5) Check the feasibility of the energy substitution SP

The energy substitution SP is formulated as:

\[
\min_{\mathbf{x}} \{0 | s.t. (2)-(12)\}
\]

The variables $x^{(s)}$ and $\lambda^{(s)}$ are set to zero. If (52) is feasible, provide the optimality cut (53) to the MP, and go to step 1. Otherwise, go to step 6.

\[
\psi_n \geq \lambda - \lambda[A_{m,n} A_{m,n}][e^{(s)} g^{(s)}]
\]

6) Add L&P cut to the relaxed SP

For each integer variable $s_{w,k}^{(s)}$, if the solution $\hat{s}_{w,k}^{(s)}$ in the relaxed SP is fractional, then formulate the following L&P cut generating problem [53]:

\[
\min_{\mathbf{x}_{n,k}} \alpha^{(s)} e_{n,k}^{(s)} + \alpha^{(s)} g_{n,k}^{(s)} + \alpha^{(s)} \hat{x}_{n,k} - \beta
\]

s.t.

\[
\mathbf{a} = u^T \hat{\mathbf{A}} - u_{i} \varepsilon
\]

\[
\mathbf{a} = v^T \hat{\mathbf{A}} + v_{i} \varepsilon
\]

\[
\mathbf{a} = [\alpha_{s}, \alpha_{w}, \alpha_{s} + \varepsilon]\n\]

\[
\beta = v^T b + v_{i} \varepsilon
\]

\[
\mathbf{1}^T u + u_{i} \varepsilon + v + v_{i} = 1
\]

\[
u_{i}, v_{i}, u_{i}, v_{i} \geq 0
\]

where r is the order of this integer variable among all the variables; ε is the unit vector. The optimal solution $\hat{\alpha}_{s}^{(s)}, \hat{\alpha}_{w}^{(s)}, \hat{\alpha}_{s}^{(s)}, \hat{\beta}_{s}^{(s)}$ can be obtained by solving the problem (54)-(61).

The relaxed SP in step 3 can be then updated by supplementing the L&P cut (62):

\[
\alpha^{(s)} e_{n,k}^{(s)} + \alpha^{(s)} g_{n,k}^{(s)} + \alpha^{(s)} \hat{x}_{n,k} - \hat{\beta} \geq 0
\]

Solve the updated relaxed SP. If feasible, provide the optimality cut to the MP, similar to (53). Otherwise, add feasibility cut similar to (51). Then the upper bound can be updated as:

\[
UB^{(s)} = \min \{UB^{(s-1)}, \mathbf{c}^T \mathbf{x} + \sum_{n \in \text{EH}} \psi_m\}
\]

7) Convergence

Repeat the iteration from step 2 until the condition $(UB - LB)/(UB + LB) < \delta$ is satisfied.

To sum up, the basic idea of the enhanced Benders decomposition procedure is that the load shifting-curtailling SP...
Curtailment of electricity load

(b) Gas consumptions of the EH. (c) Electricity consumptions of the EH.

Fig. 7.

Integrated electricity and gas test system with networked EHs.

Before the DR:

During the DR:

Fig. 6. Integrated electricity and gas test system with networked EHs.

24

16

8

-2

-4

-6

-8

-10

-12

-14

-16

-18

-20

-22

-24

12:00 13:00 14:00 15:00 16:00

Time (hour)

Electricity load (MW)

12:00 13:00 14:00 15:00 16:00

12:00 13:00 14:00 15:00 16:00

Time (hour)

Electricity consumption (MW)

30

25

20

15

10

5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Time (hour)

Gas consumption (MW)

Fig. 7. (a) Shifting and curtailment of electricity load under a high stressed case. (b) Gas consumptions of the EH. (c) Electricity consumptions of the EH.

Fig. 8. Comparison of the operating conditions of EHs before and after DR.

will only be checked, when both the relaxed SP is feasible and the energy substitution SP is infeasible. With this checking mechanism, the complex loop 2, as in Fig. 4, can be replaced by the simpler loop 1 for most of the scenarios. Therefore, the computation efficiency can be significantly improved.

VI. CASE STUDIES

A. Test System

In this section, an IEEE 24-bus Reliability Test System [54] and Belgium natural gas transmission system [55] are integrated to validate the proposed method. The two systems are topologically connected by GFUs and EHs, as presented in Fig. 6. The oil steam generating units with generation capacities of 12 MW, 20 MW, and 100 MW at electricity buses 15, 13, 14, and 2 are replaced by GFUs. The heat rate coefficients of GFUs and gas production prices of gas sources are set according to [56]. The configuration of EHs is the same as that in Fig. 1. It is assumed that half of the electricity load at peak hours is supplied by EHs. Based on that, the electricity, heating, and cooling loads, as well as the capacities of the devices in the EHs, are normalized according to [57]. The energy conversion efficiencies of the devices in the EHs are also set according to [57]. The proportions of the shiftable and curtailable loads are set to 20% and 10%, respectively [58].

The numerical simulations are performed on a laptop with an Intel® Core™ i7-8565U 1.80GHz and a 16GB memory. The optimization problems are solved using Gurobi. The self-scheduling SPs of EHs are parallely processed by four cores.

B. Effectiveness of the Optimal Control for DR

In this subsection, a large requirement for DR capacity is set to validate the effectiveness of the proposed multi-level self-scheduling strategy in stressful scenarios. In other words, it should be ensured that the needs of energy end-users can still be satisfied with reduced electricity consumption, without violating the physical constraints of devices (e.g., the electricity generating capacity of CHP). The peak value of the electricity load is increased by 0.3 times compared with the original Reliability Test System. The nodal gas pressures are limited to [0.95, 1.05] times of their values in the normal operating state. The DR signal is sent at 12:00. The DR period is set as 13:30-15:00. The available shifting-in period is set as 12:00-13:30 and 15:00-17:00. The DR capacity requirement is set based on the shortage of system reserve, e.g., 21.96 MW for EH 5.

The electricity and gas consumptions of EH 5 before and after self-scheduling are compared in Fig. 7(b) and Fig. 7(c). During 13:30-14:30, the energy of electricity consumption reduced by DR is 60.34 MWh. The detailed self-scheduling process of the electricity load in EH 5 is explicated in Fig. 7(a). It can be found that the load shifting and curtailment only account for 9.66 and 4.39 MWh, respectively. Most of the DR capacity is provided by energy substitution. The shifted-out electricity loads are deployed to the adjacent periods, such as 12:45-13:15 and 15:00-15:45. These shift-in loads are well accommodated by the remaining capacities of the EH during these periods, without increasing the electricity consumption.

Fig. 8 shows the realization of the energy substitution from the perspective of specific devices in the EH. During the DR period 13:30-15:00, the outputs of electricity-consuming...
devices (e.g., EHP) are generally replaced by gas-consuming devices (e.g., CHP, GBL, and ACL). Therefore, the gas consumption of the EH increases significantly during 14:00-14:30, as presented in Fig. 7(b).

To observe the impact of gas demand spikes on the IEGS operation, the gas pressures along the critical pipeline route (e.g., the pipelines passing through GBs 5, 6, 7, 4, 14, 13, 12, 11, 17, and 18) are presented in Fig. 9. The variations of gas pressures at critical GBs along the route during the DR period are presented in detail. It can be seen that the gas pressures are controlled strictly and smoothly between the upper and lower bounds. For example, GB 6 is connected to EH 2. The EH’s gas consumption increases dramatically during the DR. To deliver that, the gas source at upstream GB 5 ramps up its gas production to increase the linepack. The nodal pressure of GB 5 also increases to prepare for the DR. Therefore, the increased gas consumption during DR can be well accommodated by the coordinated optimal control of IEGS and EHs.

C. Validation of Proposed Methods

The proposed DR framework and solution method are validated in this section by performing two comparative studies. First, to validate the effectiveness of linepack utilization in the DR, we set two scenarios. One uses the linepack flexibilities to provide DR service, and the other does not use the linepack. The operating costs and load shifting/curtailment values in both scenarios with different DR requirements and gas pressure fluctuation limits are presented in Table 2.

As we can see, when the gas pressure fluctuation limit is set to 1.2%, the EHs are not able to provide the 10% DR capacity if the linepack is not used. They can provide the DR only when the gas pressure fluctuation limit increases to 1.5%. This is because, without the linepack, the EH can only utilize the extra gas that is caused by the difference between the day-ahead schedule and intraday operation. This part of the gas is not adequate to cover the gas demand spike during the DR. Comparing different DR capacities, we find that when the DR capacity is low, the costs in the two scenarios are the same. There is no load shifting or curtailment in both scenarios. When the DR capacity increases, the operating cost and load shifting/curtailment without linepack are larger than those with linepack. This validates that using linepack is beneficial for DR, especially in stressed scenarios.

Secondly, to demonstrate the effectiveness of the proposed EBD solution method, we set three scenarios A, B, and C, namely, the high-stress scenario, mid-stress scenario, and low-stress scenario. The DR durations in three scenarios are all set to 1.5 hours, while the DR capacities are set to 10%, 50%, and 90% of the maximum DR potential, respectively. Three methods A, B, and C are used to solve the optimization problem in these scenarios. Method A is our proposed EBD method. In method B, the problem retains the nonlinearities in the self-scheduling and gas flow dynamics equations. Then, it is a large-scale mixed-integer nonlinear programming problem and is solved by using the Gurobi solver in a centralized manner. In method C, the reformulations are performed. Then, the original optimization problem becomes a large-scale mixed-integer SOC programming problem, and is solved by using the Gurobi solver in a centralized manner. The tolerances of the gap in the three scenarios are all set to 10^{-3}.

The computation times are presented in Table 3. As we can see, the proposed EBD method (method A) has the best performance in all three scenarios. The computation efficiency of the proposed method in scenario A is 98.28% and 95.44% higher than methods B and C, respectively. Scenarios B and C, as the requirement for DR capacity becomes larger, the computation time of our proposed method increases, especially in scenario C. This is because scenarios A and B only entail the energy substitution strategy, but the load-shifting strategy is evolved in scenario C. Then, the solution procedure enters loop 2, as shown in Fig. 6, which will take more time. Nonetheless, the computation time of the proposed method is controlled within the acceptable range. In contrast, method B cannot converge in Scenario B and C. It validates that the proposed method improves the tractability of the problem, which is more robust to stressed scenarios.

The computation time of our method in scenario C is further elaborated in Fig. 10. The IEGS master problem occupies most of the computation time, while the parallel computing of the EH subproblem saves considerable time. Moreover, most of the
dramatically, the gas system still operates normally, and all the framework. It means that although gas consumption increases linepack flexibilities by using our proposed coordinated control gas transmission system) can be well accommodated by self-scheduling (i.e., spikes in gas consumption from the natural failures). Therefore, it should be ensured that the side effect of state against future risks (e.g., load volatility or component failures). Thus, the self-scheduling of EHs does not violate the IEGS security constraints, the fluctuation of gas pressure and utilization of linepack may still put the IEGS in a vulnerable state against future risks (e.g., load volatility or component failures). Therefore, it should be ensured that the side effect of self-scheduling (i.e., spikes in gas consumption from the natural gas transmission system) can be well accommodated by linepack flexibilities by using our proposed coordinated control framework. It means that although gas consumption increases dramatically, the gas system still operates normally, and all the physical states (such as gas pressure, gas flow, etc.) are limited by their physical constraints. To this end, key factors such as the DR capacity, operating cost, and gas pressure fluctuations should be balanced. For further investigation, the operating conditions of EHs and IEGS with various DR requirements, including DR capacities, DR durations, and gas pressure fluctuation limits are compared.

The simulation results are presented in Table 4. In the scenarios with the gas pressure fluctuation limits of 1.20%, the total operating cost, gas purchasing cost, and load shifting/curtailment are higher with the increase of the DR capacity and DR duration. By contrast, the generation cost is reduced, because the reserves are covered in part by the DR of EHs. With the relaxation of gas pressure limits from 1.20% to 1.30% and 2.40%, the EHs tend to have more flexibility to perform self-scheduling, and thus the total operating cost and load shifting/curtailment can be reduced.

D. Comparisons of Various DR Requirements

Table 4. Operating condition of IEGS and EHs with different DR settings

<table>
<thead>
<tr>
<th>Gas pressure fluctuation limit (%)</th>
<th>1.20%</th>
<th>1.30%</th>
<th>2.40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR duration (h)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>DR capacity (%)</td>
<td>70%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>Total operating cost ($)</td>
<td>2.64×10^5</td>
<td>2.60×10^5</td>
<td>2.59×10^5</td>
</tr>
<tr>
<td>Generation cost ($)</td>
<td>1.89×10^4</td>
<td>1.91×10^4</td>
<td>1.92×10^4</td>
</tr>
<tr>
<td>Gas purchasing cost ($)</td>
<td>7.43×10^4</td>
<td>6.91×10^4</td>
<td>6.63×10^4</td>
</tr>
<tr>
<td>Load shifting/curtailment (MW)</td>
<td>25.97</td>
<td>8.02</td>
<td>0</td>
</tr>
</tbody>
</table>

The results verify that even under a highly stressed situation, the EHs can still demonstrate great potential for DR with the proposed method, which can achieve about 3 times of electricity reduction compared with that in traditional electricity reduction.
The fluctuation of nodal gas pressure can be also controlled within an appropriate range (e.g., 1.20%). This paper can assist the IEGS operators in devising the coordination strategies between the electricity and gas systems during the operational phase.

Apart from the solution tractability and privacy-preserving issues addressed in this paper, with the ever-increasing integration of distributed flexible resources (such as electrical vehicles, air conditioners, and distributed wind generators), the energy system is still facing challenges in real-time operations. The first one is the increasing communication burdens due to large data transmission volumes, which could lead to issues like packet drop and communication latency. New technologies, such as consensus control, federated learning, and cloud-edge computing are essential to address these based on a more decentralized structure. Secondly, as EHs are gradually transferred from pure consumers to prosumers, packaging the distributed resources as a virtual power plant shows promising arbitrage potential in ancillary markets. To deal with the heterogeneous physical/economic characteristics of distributed resources, the bidding strategies on the ancillary market should be well-tailored based on unique operating characteristics and marginal costs. Thirdly, more sophisticated operation schemes should be devised using model predictive control, distributionally robust optimization, chance constraints, etc., to hedge against various uncertainties such as weather, load, and energy price in future works.

APPENDIX: SPARSE ENERGY CONVERSION MATRIX

The specific formulation of the sparse energy conversion matrix is presented in (64), where COP and COP are the coefficients of performance of the EHP in heating and cooling mode, respectively; γ is the indicator for EHP operating mode, where γ = 1 represents heating mode, and γ = 0 represents cooling mode; ηh and ηc are the electrical and thermal efficiencies of the CHP, respectively; ηth is the thermal efficiency of the GBL; COP is the coefficient of performance of the ACL.

REFERENCES

