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ABSTRACT
The paradigm shift  from a coal-based power system to a renewable-energy-based power system brings more challenges to the
supply-demand  balance  of  the  grid.  Distributed  energy  resources  (DERs),  which  can  provide  operating  reserve  to  the  grid,  are
regarded as a promising solution to compensate for the power fluctuation of the renewable energy resources. Small-scale DERs
can be aggregated as a virtual power plant (VPP), which is eligible to bid in the operating reserve market. Since the DERs usually
belong to different entities, it is important to investigate the VPP operation framework that coordinates the DERs in a trusted man-
ner. In this paper, we propose a blockchain-assisted operating reserve framework for VPPs that aggregates various DERs. Considering
the heterogeneity of various DERs, we propose a unified reserve capacity evaluation method to facilitate the aggregation of DERs.
By considering the mismatch between actual available reserve capacity and the estimated value, the performance of VPP in the
operating reserve market is improved. A hardware-based experimental system is developed, and numerical results are presented
to demonstrate the effectiveness of the proposed framework.
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The  decarbonization  of  the  power  system  leads  to  an
increasing  penetration  of  renewable  energy  sources
(RESs)[1].  Different  from  conventional  generators,  the

power outputs of RESs (e.g., photovoltaics and wind turbines) are
inherently  intermittent  and  non-dispatchable.  The  increasing
share of RES in generation poses more challenges to the real-time
power balancing of the grid, thereby threatens the safety and sta-
bility of the power system[2]. Therefore, the power system requires
more  operating  reserve,  to  compensate  for  the  fluctuation  of  the
RES generation[3].

Traditionally, the operating reserve is provided by conventional
combustion  generators,  which  are  running  part-loaded  with
reduced  efficiency.  Such  efficiency  reduction  could  lead  to  an
increase of fossil fuel usage and thereby bring a devastating effect
to  the  emission  reduction  brought  by  RESs[4].  Thus,  researchers
propose  to  use  distributed  energy  resources  (DERs),  e.g.,  battery
energy storage system (BESS)[5] and heat,  ventilation and air con-
ditioner  (HVAC)[6],  to  provide  operating  reserve[7].  However,  the
operating  reserve  provided  by  a  single  DER,  e.g.,  an  HVAC,  is
small[8] and usually cannot meet the minimum entry requirement
of the operating reserve markets[9].

To tackle this problem, one promising solution is to aggregate
the DERs as a virtual power plant (VPP)[10]. Naval et al.[11] propose
a  VPP  model  to  aggregate  various  RES  generators  and  operate
them as a single power plant, which reduces grid dependence and
electricity  costs.  Elgamal  et  al.[12] propose  an  optimal  scheduling
method  for  RES-based  VPP,  which  reduces  the  market  penalty
brought by the intermittency of RES. Xu et al.  study a VPP con-
sisting of wind farms and coal-fired plants, which responds to the
real-time  price  signal  from  the  market[13].  The  above-mentioned
research  only  integrates  the  resources  from  the  generation-side,
which might limit the market potential of VPPs[3].

To  actively  participate  in  the  electricity  markets,  researchers
study  the  VPP  models  that  aggregate  multiple  types  of  DERs[14].

Qiu et al.[15] propose a VPP model with BESS units, generators and
interruptible consumers, which bids in both the day-ahead market
and  the  real-time  market.  Rahimiyan  and  Baringo[16] study  the
optimal coordination of VPP, which consists of generators, flexible
loads and storage systems, according to the price signal from the
market. Baringo et al.[17] propose a day-ahead scheduling model for
a  VPP  that  aggregates  multiple  types  of  DERs  and  bids  in  both
energy  and  reserve  markets.  The  above-mentioned  studies  use  a
general  model  for  flexible  loads  in  their  optimization  problem,
which  neglects  the  operating  characteristics  of  DERs  in  the
demand-side.

The  operating  characteristics  of  DERs  in  the  demand-side  are
heterogeneous,  as  they  serve  different  needs[18]. The  unique  char-
acteristics of DERs play an important role in the evaluation of the
operating  reserve  capacity  that  individual  DERs  can  provide.
Khani and Farag[19] develop a BESS model considering the provision
of  operating  reserve.  Hui  et  al.[20] study  the  thermal  model  of  the
indoor  space,  atop  which  they  evaluate  the  reserve  capacity  that
HVACs  can  provide.  The  operating  reserve  capacity  evaluation
method  for  inverter-based  HVACs,  whose  power  consumption
can be continuously adjusted, is proposed in Ref. [21]. Chatterjee
et  al.[22] investigate  the  model  of  ventilation  fans,  which  provides
the correlation between the power consumption and the required
airflow.  Rotger-Griful  et  al.[23] evaluate  the  potential  of  ventilation
systems for providing operating reserve, considering the dynamics
of the indoor carbon dioxide concentration. The above-mentioned
studies provide  detailed  models  to  describe  the  electricity  con-
sumption behaviors of single-type DERs, while the unified frame-
work that  considers  the  operating  reserve  capacity  evaluation for
multiple types of DERs is underdeveloped.

Besides  reserve  capacity  evaluation,  another  key  challenge  in
VPP operation is the trust crisis[24]. One typical scenario where the
trust  crisis  could  arise  from  is  the  process  of  recording  the 
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response of the DERs for profit allocation[25]. Since interest conflicts
exist between the VPP operator and individual DERs, a centralized
ledger maintained by a single entity cannot be fully trusted by the
others[26,27].  In  this  context,  distributed  ledger  technologies,  e.g.,
blockchain,  are  preferred due to  its  widely-recognized credibility,
traceability and transparency[28,29]. Yan et al.[30] propose a blockchain-
based  framework  for  demand  response,  including  the  process  of
invitation, bidding and settlement. Gough et al.[31] develop a trans-
active energy model to optimize the power schedule of the DERs
within VPP,  and record the  transaction process  with  blockchain.
Luo et al.[32] leverage the blockchain smart contract to automize the
power dispatching of multiple DERs. Mnatsakanyan et al.[33] design
a  blockchain-mediated  VPP  model  that  manages  the  DERs  in  a
trusted  manner.  However,  there  lacks  application  of  blockchain
technologies regarding the provision of operating reserve.

As summarized in Table 1,  there exist  mainly three challenges
in  aggregating  various  demand-side  DERs  in  a  VPP  to  provide
operating  reserve.  Firstly,  the  unique  characteristics  of  individual
DERs need to be considered in the evaluation of operating reserve
capacity.  Secondly,  the  framework  that  supports  the  operating
reserve capacity evaluation for multiple types of DERs in the VPP
is not well-developed. Finally, the trusted operation of the VPP in
providing operating reserve lacks  investigation in the existing lit-
erature.  To  fill  these  research  gaps,  in  this  paper,  we  propose  a
blockchain-assisted  operating  reserve  framework  for  VPPs  that
aggregate  DERs  of  multiple  types.  The  proposed  blockchain-
assisted framework records the operation process of the VPP in a
traceable  distributed  ledger,  which  is  communally-agreed  by  all
the  entities  in  the  VPP,  making  the  operation  of  VPP  trustable.
Considering  the  heterogeneity  of  DERs,  we  propose  a  unified
method  to  evaluate  their  reserve  capacities,  such  that  the  DERs
can be effectively aggregated to participate in the operating reserve
market. With the blockchain smart contract, the operation process
of VPP in providing operating reserve is automized, including the
reserve  capacity  evaluation,  the  dispensation  of  regulation  signal,
the  assessment  of  the  response  performance  and  the  VPP  profit
allocation. A compensation mechanism is designed to reduce the
response  mismatch  with  the  automatic  and  timely  update  of
operating  reserve  capacity  evaluation,  which  is  enabled  by  the
proposed blockchain framework. Numerical  case studies are pre-
sented to demonstrate the effectiveness of  our proposed method,
and the proposed blockchain framework is verified on a hardware-

based experimental system.
The remainder  of  this  paper  is  organized as  follows.  Section 1

presents the  proposed  blockchain-assisted  VPP  operation  frame-
work. Section 2 introduces the unified method for reserve capacity
evaluation. In Section 3, a case study is performed to demonstrate
the effectiveness of the proposed method. Section 4 concludes the
paper.

1    Blockchain-based operation framework of vir-
tual power plant
The  blockchain  technology  can  provide  immutable,  transparent
and decentralized recording service to the VPP operation. In this
section,  the  components  of  the  blockchain-based  VPP  operation
framework and their corresponding functionalities are presented.

1.1    Operation framework of virtual power plant
In this paper, we study the VPP that bids in the operating reserve
market, where both upward and downward reserve capacities are
traded.  Providing upward reserve capacity means to decrease the
power consumption or feed energy back to the grid. On the con-
trary, providing downward reserve capacity means to increase the
power consumption or feed less energy to the grid. The revenue of
providing operating reserve consists of two parts, the capacity rev-
enue and the mileage revenue. The capacity revenue is granted for
reserving  capacity,  which  can  be  calculated  before  the  response.
The mileage revenue is calculated based on the actual response to
the regulation signal. The operation of VPP consists of four phases,
i.e.,  bidding  in  the  operating  reserve  market,  responding  to  the
regulation signal from the grid, assessing the response performance
of the DERs and allocating profit to individual DERs.

1.1.1    Bidding in the operating reserve market

Pbid
i πcap

i

Before the market closure,  the VPP collects the reserve capacities
estimation  and capacity price preferences  from each DER,
which  will  be  assembled  as  the  bidding  portfolio  in  the  market.
The available reserve capacities of heterogeneous DERs are evalu-
ated through a unified method, which will be discussed in detail in
the next section.

πcap Pcap
VPP

n

After  the  market  is  cleared,  the  market  equilibrium,  i.e.,  the
clearing price, , and the awarded capacity of the VPP, , are
returned  to  the  VPP.  According  to  the  market  equilibrium,  the
VPP finds out an index ,  which equals to the number of  DERs
whose bidding is successful, as indicated by the red dotted line in
Figure 1.

iThe awarded capacity of DER  can be expressed as

Pcap
i =


Pbid
i , i < n

Pcap
VPP−∑i∈I,i<n Pcap

i , i= n
0, i > n

,∀i ∈ I, (1)

i I
Pcap
i Pbid

i

i

where  is the index of the DERs in price ascending order;  is the
set of all DERs in the VPP;  and  are the awarded capacity
and reserve capacity estimation of DER , respectively.

1.1.2    Responding to the regulation signal

d λ
d= 0

d= 1

At the beginning of the operating reserve period, the grid sends a
binary direction indicator  and a regulation signal  to the VPP.
The direction indicator  means that the grid needs the VPP
to  provide  upward  reserve  capacity,  while  indicates  the
needs for downward reserve capacity. As the processes of providing
upward and downward reserve capacities are similar, we take pro-
viding upward reserve as an example to demonstrate our proposed

 

Table 1    Summary of related literature

Paper Various types of
DERs

Detailed modeling of
demand-side resources

Trusted operation of
VPP

[15] ✓ × ×

[16] ✓ × ×

[17] ✓ × ×

[19] × ✓ ×

[20] × ✓ ×

[21] × ✓ ×

[23] × ✓ ×

[30] × × ✓
[31] × × ✓
[32] × × ✓
[33] × × ✓
This

paper ✓ ✓ ✓
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λmechanism. Ranging from 0 to 1, the regulation signal  indicates
the amount of reserve capacity needed, which can be calculated as

Preg
VPP = λPcap

VPP, (2)

Preg
VPPwhere  is the amount of reserve capacity needed of the entire

VPP.

P̂reg
i

Without considering the uncertainty of the DERs, the awarded
reserve capacities of DERs are invoked in ascending order of their
bidding  price  preferences.  The  regulating  capacity  of  each  DER,

, can be calculated with Algorithm 1:
Algorithm 1 Calculation of regulating capacity without considering uncertainty
of DERs

P̂reg
i = 0,∀i ∈ IInitialization: 

Calculation:

i← 1

i≤ |I|while  do

P̂reg
i = min

(
Pcap
i ,Preg

VPP−∑∀i∈I P̂
reg
i

)
i← i+ 1
end while

To  prevent  market  participants  from  speculating  by  over-esti-
mating their reserve capacity, insufficient response to the regulation
signal is penalized by the market. Such penalty motivates the VPP
to accurately evaluate its reserve capacity and fully respond to the
signal. However, in the VPP, individual DERs might fail to follow
the  signal  accurately  due  to  the  uncertainty  of  its  operation.  We
divide the process of VPP responding to the regulation signal into
two stages,  namely  the  calculation  of  regulating  capacity  and  the
response of individual DERs, as shown in Figure 1. The impact of
the uncertainty of DERs during these two stages are discussed, as
follows.

Stage 1: regulating capacity calculation. Since the reserve capacity
of  the  DER  is  highly  related  to  its  current  status,  the  available
capacity  of  each  DER  might  deviate  from  its  estimated  value,
leading  to  a  mismatch  between  the  available  capacity  and  the
required  amount  calculated  with  Algorithm  1.  For  example,  the
DER  might  over-estimate  its  reserve  capacity,  as  shown  by  the
blue block in Figure 1. The mismatch can be calculated as

Pmis,1
i = max

(
0, P̂reg

i −Prt
i

)
,∀i ∈ I, (3)

Pmis,1
i i

Prt
i

i

where  is  the  reserve  capacity  mismatch  of  DER  due  to
uncertainty in Stage 1;  is the actual available reserve capacity of
DER  in real-time.

i Preg
i

To  avoid  sending  an  infeasible  regulation  requirement  to  the
DER,  the  uncertainty  of  DERs needs  to  be  considered,  such that
the  shortage  of  reserve  capacity  of  some bid-wining  DERs  could
be compensated before the dispensation of DER regulating capac-
ity.  Since  the  awarded reserve  capacity  of  the  VPP is  usually  not
fully invoked, the VPP can assign the regulating capacities of each
DER  based  on  their  available  reserve  capacity.  For  example,  in
Figure  1,  the  shortage  of  reserve  capacity  is  compensated  by
invoking  the  available  capacity  of  the  next  bid-winning  DER,
which  is  denoted  by  the  gray  block.  The  regulating  capacity  that
VPP assigns to DER  considering the uncertainty in Stage 1, ,
can be calculated by Algorithm 2:
Algorithm  2 Calculation  of  regulating  capacity  considering  uncertainty  in
Stage 1

Preg
i = 0,∀i ∈ IInitialization: 

Calculation:

i← 1

i≤ |I|while  do

Preg
i = min(Prt

i ,P
reg
VPP−∑∀i∈I P

reg
i )

i← i+ 1
end while

Stage  2:  response  of  individual  DERs. Since  the  DERs  are  not
directly controlled by the VPP, there exists the possibility that the
regulation  requirements  sent  by  the  VPP  are  not  accurately
responded, as shown by the yellow box in Figure 1. Different from
Stage  1,  such  insufficient  response  cannot  be  compensated,
thereby leads to the decrease of the mileage revenue that could be
earned.

1.1.3    Assessing the response performance

Pmis,2
i Preg

i

i

To  help  with  allocating  profit  and  improving  its  performance  in
the market, it is important for the VPP to assess the performance
of individual DERs. The mismatch between reserve capacity bids
and actual available reserve capacity of each DER is calculated by
Algorithm 2. Due to the uncertainty in Stage 2, there might exist a
mismatch, ,  between  the  assigned  regulating  capacity, ,
and the actual response of DER , which can be expressed as
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Fig. 1    The process of VPP providing operating reserve for one time slot, including DER reserve capacity evaluation, bidding, regulation signal responding and
revenue allocation.
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Pmis,2
i = |Preg

i −Pres
i | ,∀i ∈ I, (4)

Pres
i iwhere  denotes the power adjustment of DER  in response to

the regulation requirement.

1.1.4    Profit allocation

The profit of each DER for providing operating reserve consists of
the capacity revenue, the mileage revenue and the market penalty.
In the following paragraphs, we describe the methods to calculate
the profit of each DER and the VPP.

Capacity revenue: Based on the market clearing result, the total
capacity revenue of the VPP is calculated as

Rcap
VPP = πcapPcap

VPP. (5)

On this  basis,  the  capacity  revenue of  individual  DERs can be
calculated as

Rcap
i = πcapPcap

i , ∀i ∈ I. (6)

Mileage  revenue: The  mileage  revenue  is  calculated  based  on
the actual response:

Rmil
VPP = πmil ∑

i∈I

|Pres
i |, (7)

Rmil
i = πmil |Pres

i | ,∀i ∈ I, (8)

πmilwhere  denotes the mileage price set by the market.
Market  penalty: The  inadequate  response  of  the  VPP  to  the

regulation signal is penalized by the market, which can be calculated
as

Rpen
VPP = πpen

∣∣∣∣∣Preg
VPP−∑

i∈I

Pres
i

∣∣∣∣∣ , (9)

πpenwhere  is the penalty rate set by the market.
The VPP penalizes the DERs for the mismatches, and apportions

the penalty from the market to related DERs:

Rpen
i = πpen (Pmis,1

i +Pmis,2
i ) ,∀i ∈ I. (10)

1.2    Blockchain-based realization of the operation framework

1.2.1    Structure and key elements of the blockchain

Since the identity of DERs in the VPP are usually known and vet-
ted, a consortium blockchain framework can be adopted to avoid
the  costly  mining process.  In  this  paper,  we  realize  the  proposed
VPP  operation  framework  with  an  open-source  consortium
blockchain  platform,  Hyperledger  Fabric[34].  The  structure  of  the
blockchain platform is illustrated in Figure 2. The key elements of
the blockchain, i.e., peer nodes, distributed ledger and smart con-
tract, are introduced in details in the following paragraphs.

Peer node: Peer nodes are the basic components of the decen-
tralized blockchain network, which act as the container of the dis-
tributed  ledger  and  the  smart  contract.  For  a  consortium
blockchain, such as Hyperledger Fabric, the identity of each entity
in the VPP is known and vetted. The identity is used by the peer
nodes  for  authentication  check  before  the  corresponding  entity
can interact with the distributed ledger.

Distributed  ledger: The  distributed  ledger  consists  of  a  world
state database  to  store  the  current  state  of  all  assets  (e.g.,  times-
tamp,  ID  and  available  reserve  capacity)  and  a  temper-resistant
blockchain  to  store  the  changes  of  assets  (i.e.,  transactions)  in

immutable sequence.  Each DER is  modeled as a pseudo-asset,  of
which the properties are represented as a group of key-value pairs.
Both the DER itself and the VPP are granted the right to propose
changes to the pseudo-assets. Since all changes are recorded in the
blockchain  and  the  identities  are  known,  malicious  activities  can
be  effectively  traced  back,  thereby  enhances  the  security  of  the
VPP operation.

Smart  contract: The  smart  contract,  which  is  installed  on  the
peer  nodes,  defines  the  attributes  of  the  pseudo-asset  and  the
functions that  the  peer  node  can  utilize  to  interact  with  the  dis-
tributed  ledger.  To  avoid  inconsistent  changes  of  the  distributed
ledger,  the  smart  contract  should  be  agreed  by  all  participants
before deployment and remains consistent globally.

1.2.2    Functionalities of blockchain elements

The above-mentioned operation framework defines the principles
of  interacting with  these  pseudo-assets.  Thus,  the  VPP operation
framework can be integrated to the smart contract and the opera-
tion of the VPP can be made reliable, creditable and automatic.

t′

Pbid
i πcap

i

πcap

Pcap
i

Bidding in the operating reserve market: Before bidding in the
operating  reserve  market  for  time  slot ,  each  DER  updates  its
reserve  capacity  estimation  and  price  preference .  The
VPP gathers the information from the DERs by querying the dis-
tributed ledger and forms the bidding portfolio. After the operating
reserve  market  is  cleared,  the  market  clearing  price  and  the
awarded capacity of each DER  are updated by the VPP.

Preg
i

Pres
i

Responding to the regulation signal: Each DER is  assumed to
be equipped with a telemetry system, which measures and transfers
the indexes related to reserve capacity evaluation, e.g.,  the indoor
temperature of a building cooled by HVAC. Based on such mea-
surements,  the  reserve  capacities  of  the  DERs  can  be  updated
periodically, which provide information for the regulating capacity
calculation,  i.e.,  Algorithm  2.  The  regulating  capacities  are
updated to the pseudo-asset by the VPP and queried by each DER.
The actual response  is measured by the telemetry system, and
automatically updated in the distributed ledger.

Assessing the response performance: The reserve capacity mis-
matches due to the uncertainty in Stage 1 and Stage 2 are calculated
according to Eqs. (3) and (4), respectively.

Profit allocation: The capacity revenue and mileage revenue of
the bid-winning DERs are calculated through Eqs. (6) and (8). For
the mismatches, the penalty of each DER is calculated based on Eq.
(10).

2    Unified reserve  capacity  evaluation of  hetero-
geneous distributed energy resources
VPP  can  aggregate  multiple  types  of  DERs  to  provide  operating
reserve. Considering the  different  physical  and operation charac-
teristics, in this section, we introduce a unified evaluation method
to assess the available reserve capacities (both upward and down-
ward) of heterogeneous DERs.

τ t1 t2
τ = t2− t1

In this section, we denote the length of the time slot of providing
operating reserve by , which starts at time  and ends at time ,
i.e., .  It  is  assumed  that  the  DER's  adjusted  power
remains constant during each time slot.

2.1    Capacity evaluation of battery energy storage system

t Pdischarge
BESS,t

Et

When providing upward reserve capacity, BESS discharges to feed
energy back to the grid. The maximum discharging power of the
BESS at time , , is constrained by the energy stored in the
BESS, , as shown in the following equation:
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Pdischarge,max
BESS,t = min

{
Pmin
BESS,

Emin−Et

τ

}
, (11)

Pmin
BESS Eminwhere  is the discharging power limit of the BESS;  is the

lower limit of energy storage of the BESS.

t
Pcharge
BESS,t

When  providing  downward  reserve  capacity,  BESS  charges  to
draw  energy  from  the  grid.  At  time ,  the  maximum  charging
power of the BESS, , can be calculated as

Pcharge,max
BESS,t = min

{
Pmax
BESS,

Emax−Et

τ

}
, (12)

Pmax
BESS Emaxwhere  is  the  charging  power  limit  of  the  BESS;  is  the

upper limit of the energy storage of the BESS.
The  evolution  of  the  energy  stored  in  the  BESS  can  be

expressed as

Et2 = Et1 + st1P
charge
BESS,t1τ− (1− st1)P

discharge
BESS,t1 τ, (13)

st1 st1 = 1

st1 = 0

where  is  the  status  indicator  of  the  BESS.  We  use  to
indicate that the BESS is charging during this time slot. Similarly,

 indicates that BESS is discharging during this time slot.
The upward and downward reserve capacity that the BESS can

provide can be calculated as

Pup
BESS = Pt−Pdischarge,max

BESS,t , (14)

Pdown
BESS = Pcharge,max

BESS,t −Pt, (15)

Pt twhere  is  the  power  of  the  BESS  at  time ,  without  providing
operating reserve.

2.2    Capacity evaluation of inverter-based HVAC
To evaluate the reserve capacity of the inverter-based HVAC, the
thermal  dynamics  of  the  corresponding  building  needs  to  be
studied, which can be formulated as[21]

Cdθ
t
in

dt =Hcond+Hvent−HHVAC, (16)

C θt
in

t Hcond Hvent

HHVAC

where  is the thermal capacity of the building;  is the indoor
temperature  at  time ;  and  represent  the  heat  gain
through  conduction  and  ventilation,  respectively;  is  the
cooling capacity of the inverter-based HVAC.

The  heat  gains  can  be  expressed  as  a  function  of  the  indoor

θitemperature : {
Hcond =

(
θt

out−θt
in

)
/R

Hvent = Cvt
(
θt

out−θt
in

) , (17)

θt
out t R

vt
t

where  is the ambient temperature at time ;  is the building's
thermal resistance and  is the building's ventilation rate at time
.

HHVACThe  relationship  between  the  cooling  capacity  and  the
power consumption of the inverter-based HVAC is

HHVAC = ηPHVAC, (18)

η PHVACwhere  is  the  energy  efficiency  ratio;  is the  power  con-
sumption of the inverter-based HVAC.

By allowing the indoor temperature to fluctuate within a given
range,  the  power  consumption  of  the  inverter-based  HVAC  can
be flexibly adjusted to provide operating reserve.

Rewrite the first order differential equation (16) by substituting
Eqs. (17) and (18):{

C dθtin
dt = ρt

(
θt

out−θt
in

)
−ηPHVAC

ρt =
(

1
R +Cvt

) , (19)

ρt

t
where  indicates  the  equivalent  heat  transfer  coefficient  of  the
corresponding building at time .

t1 t2Integrating both sides of Eq. (19), from  to :

C
(
θt2
in−θt1

in

)
=

w t2

t1
ρtθt

outdt−
w t2

t1
ρtθt

indt−ηPHVACτ. (20)

θavg
out vavg

For simplicity,  we  use  the  average  values  of  the  ambient  tem-
perature and the ventilation rate,  i.e.,  and ,  to  replace the
time-varying  values.  It  is  also  assumed  that  the  change  of  the
indoor  temperature  can  be  well-approximated  by  a  monotonic
linear function:

θt
in = θt1

in +
θt2
in−θt1

in

t2− t1
(t− t1) , ∀t ∈ [t1, t2] . (21)

Reformulating Eq. (20) yields:

PHVAC =
ρavgθavg

out

η
−

C
(
θt2
in−θt1

in

)
ητ

−
ρavg

(
θt1
in+θt2

in

)
2η

. (22)

Since the parameters of the building are regarded to be fixed (i.
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ρavg θavg
out η C

θt2
in

e., , ,  and  are fixed), for the given time slot, the power
consumption of the HVAC is deterministic when the indoor tem-
perature at the end of the time slot, , is known:

PHVAC = fHVAC

(
θt1
in, θ

t2
in, τ

)
. (23)

[
θin, θin

]Assuming that the HVAC is working at cooling mode and the
comfortable temperature range of the user is , the upward
and downward reserve capacity of the HVAC can be expressed as

Pup
HVAC,t = PHVAC,t−max

[
fHVAC

(
θt
in, θin, τ

)
,Pmin

HVAC,t

]
, (24)

Pdown
HVAC,t = min

[
fHVAC

(
θt
in, θin, τ

)
,Pmax

HVAC,t

]
−PHVAC,t. (25)

2.3    Capacity evaluation of car park ventilation system
In car parks, ventilation fans are installed to exhaust the vehicular
pollutants  and  provide  fresh  air.  The  concentration  of  carbon
monoxide  (CO)  is  the  main  concern  of  the  car  park  ventilation
system,  which  should  be  remained  lower  than  a  specific  level.
With the assumptions of constant air density, fixed efficiency and
no dampers, the model of ventilation fan follows the affinity law[23]:

Q1

Q2
=

N1

N2
, ps1

ps2
=

(
N1

N2

)2

, P1

P2
=

(
N1

N2

)3

, (26)

Q N ps

P
where  is  the airflow;  is  the rotational speed of the fan;  is
the static pressure of the indoor space;  is the power consumption
of the ventilation fan.

t Pvent Qvent

When  the  ventilation  fan  is  driven  by  a  frequency-variable
motor,  its  power can be continuously adjusted.  According to the
affinity law, the power consumption of the ventilation fan at time
, i.e., , is determined by the airflow  it provides:

Pvent =

(
Qvent

Qrated
vent

)3

Prated
vent , (27)

Qrated
vent Prated

ventwhere  and  are  the  airflow  and  the  corresponding
power consumption at rated mode, respectively.

To  evaluate  the  reserve  capacity  that  the  ventilation  fan  can
provide, the CO concentration model is developed:

Vdσ
t
in

dt = (Qvent−qt
L)(σt

out− σt
in)+Gt, (28)

V σt
in

t Qvent

qt
L t σt

out

t Gt

t

where  is the volume of the indoor space;  is the indoor con-
centration  of  CO  at  time ;  is  the  airflow  provided  by  the
ventilation fan;  is the leakage/infiltration airflow at time ; 
is the ambient CO concentration at time ;  is the CO flow gen-
erated in the indoor space at time .

t1 t2Taking  the  integral  of  both  sides  of  Eq.  (28),  from  to ,
yields:

V(σt2
in− σt1

in) =
r t2
t1
(Qvent−qt

L)(σt
out− σt

in)dt+
r t2
t1
Gtdt. (29)

qavg
L σavg

out Gavg

To simplify Eq. (29),  we use the average values of the leakage/
infiltration airflow, the ambient CO concentration and the indoor
CO generation, i.e., ,  and , to replace the time-varying
values. It is also assumed that the changing of the indoor CO con-
centration can be well-approximated by a monotonic linear func-
tion:

σt
in = σt1

in+
σt2
in− σt1

in

τ
(t− τ) , ∀t ∈ [t1, t2] . (30)

With the above assumptions, Eq. (29) can be reformulated as

Qvent = V(σt2
in− σt1

in)
[
σavg
outτ− σt1in+σt2in

2 τ
]−1

−Gavgτ
[
σavg
outτ− σt1in+σt2in

2 τ
]−1

+qavg
L .

(31)

V Gavg σavg
out qavg

L

σt2
in

Since the parameters of the car park, i.e., , ,  and 
are  constant,  for  a  given  time slot,  the  airflow to  be  provided  by
the ventilation system is deterministic when the CO concentration
at  the  end  of  the  interval, , is  known.  Thus,  the  power  con-
sumption of the ventilation system can be calculated as

Pvent = fvent (σt1
in, σt2

in, τ) . (32)

σ inWhen diluting CO, an upper bound, , is assigned to prevent
any harm to health. The reserve capacity of the car park ventilation
system can be calculated as

Pup
vent,t = Pvent,t−max [fvent (σt

in, σ in, τ) ,Pmin
vent] , (33)

Pdown
vent,t = Prated

vent −Pvent,t. (34)

3    Case study
In  this  section,  we  introduce  the  hardware-based  experimental
system and the blockchain system we used to verify the proposed
VPP  operation  framework.  Numerical  results  are  presented  to
demonstrate the effectiveness of our proposed method.

3.1    System setup

3.1.1    Hardware system

To verify our proposed VPP operation framework,  we develop a
hardware-based blockchain platform with seven Rock Pi devices[35],
as shown in Figure 3(a). To support the operation of Hyperledger
Fabric,  we  adopt  the  Rock Pi  X version,  which is  an  X86 single-
board computer  with  a  64-bit  Intel  Cherry  Trail  quad-core  pro-
cessor. Each Rock Pi X device is equipped with 4 GB of RAM, and
a  32-GB  SD  card.  We  install  Ubuntu  20.04  on  each  Rock  Pi  X
device,  as  its  operating  system.  Based  on  gRPC  framework,  a
communication network between Rock Pi X devices are developed
with Go programming language[36].

3.1.2    Blockchain system

In  this  paper,  we  use  Hyperledger  Fabric,  which is  a  consortium
blockchain platform,  to  avoid  the  costly  mining  process.  Specifi-
cally, we adopt Hyperledger Fabric v2.3, which has been well veri-
fied  by  developers  from different  research  domains.  Hyperledger
Fabric  also  supports  the  deployment  of  smart  contracts,  which
allows us to realize our customized functions.

Each Rock Pi X device represents a DER in the VPP, and acts
as a peer node in the blockchain system. An X.509 digital certificate
is  issued to  each peer  node,  which identifies  the  affiliation of  the
node. Using the X.509 certificates,  the authenticity  of  each trans-
action proposal can be verified, which ensures the security of the
blockchain.  We  also  configure  a  web-based  front-end  page  to
visualize  the  activities  of  the  blockchain  system,  as  shown  in
Figure 3(b).

3.1.3    Virtual power plant

We adopt a VPP with six DERs, including three HVACs, one car
park ventilation system and two BESSs,  of  which the  parameters
are  shown  in Table  2.  During  the  operation  of  VPP,  each  DER
accesses  its  corresponding  peer  node  to  interact  with  the  VPP
operator.  We  develop  a  terminal-based  interface  to  visualize  this
process, as shown in Figure 3(b).
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3.1.4    Parameters

21 ◦C 22 ◦C 23 ◦C

We simulate the VPP operation for one day, setting the length of
each  time  slot  to  15  minutes.  The  ambient  temperature  is  based
on the real historical temperature data of a summer day in Macao.
The  indoor  temperature  references  of  three  HVACs  are  set  to

,  and ,  respectively.  Each  HVAC  allows  an

1 ◦Cindoor  temperature  deviation  of  from  the  reference  value,
both  upward  and  downward.  The  ambient  CO  concentration  is
set to five parts per million (ppm), while the indoor CO concen-
tration is required to remain below 12 ppm, with a reference value
of 10 ppm. Both the two BESSs tend to keep their state of charge
levels at 75%.

3.2    Operating reserve market clearing results
For each  time  slot,  the  VPP  operator  collects  the  bidding  infor-
mation from each DERs, including both upward reserve capacities
and downward reserve capacities.  Based on the price  preferences
of  the  DERs,  the  VPP  operator  forms  the  bidding  portfolio  and
bids  in  the  operating  reserve  market  on  behalf  of  the  DERs,  as
shown  in Figures  4 and 5.  The  bids  from  individual  DERs  are
sorted in ascending order, as indicated by the stacked blocks. The
awarded reserve capacities of the VPP are denoted by the red lines
with triangular marks, in both Figures 4 and 5. After the operating
reserve  market  is  cleared,  the  awarded  capacity  of  each  DER  is
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Fig. 3    A diagram of the hardware-based experimental system, which is used to verified our proposed blockchain-based VPP operation framework.

 

Table 2    Parameters of individual DERs in VPP

DER Pmin  (MW) Pmax  (MW) Physical constraint

HVAC 1 0 3.6 20 ◦C ⩽ θin ⩽ 22 ◦C

HVAC 2 0 3.6 21 ◦C ⩽ θin ⩽ 23 ◦C

HVAC 3 0 3.6 22 ◦C ⩽ θin ⩽ 24 ◦C

Car park 0 5 σ in ⩽ 12 ppm

BESS 1 −1.5 2 0⩽ E⩽ 2 MW

BESS 2 −2 1.8 0⩽ E⩽ 2.2 MW
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calculated  and  uploaded  to  the  blockchain  by  the  VPP  operator.
The capacity revenue can also be calculated, based on the market
clearing price, as shown in Table 3.

3.3    Status of distributed energy resources
At the beginning of each time slot, the VPP operator receives the

regulation  signal  from  the  grid.  Based  on  Algorithm  2,  the  VPP
operator  collects  the  available  capacity  of  each  DER  in  real-time
and calculates the regulating capacity of each DER. The regulating
capacity information is  uploaded to the blockchain network,  and
each DER regulates its power outputs accordingly. Regulating the
operating power of individual DERs will result in a change of the

statuses  of  individual  DERs,  as  shown in Figure  6.  Although  the
statuses of DERs, i.e., the indoor temperatures of HVACs, the CO
concentration of the car park and the stored energy of the BESSs,
vary  from  their  reference  values  when  a  regulation  signal  is
received, these statuses always remain in the allowed range, which
is  indicated  by  the  light  green  areas.  After  providing  operating
reserve, individual DERs regulate their power to restore the statuses
to the reference levels, until the next regulation signal is received.

3.4    Reduction in reserve capacity mismatch
As we discussed in the previous sections, there might exist a mis-
match between the estimated reserve capacity for bidding and the
actual available reserve capacity in real-time. We demonstrate the
mismatch and its mitigation with Figure 7. The mismatch resulting
from Stage 1  uncertainty  takes  the majority  of  the  response mis-
match,  as  the  area  of  the  green  blocks  are  much  larger  than  the
area of the yellow blocks. To mitigate the effect of inaccurate esti-
mation of reserve capacity, we use Algorithm 2 to replace Algorithm
1 in regulating capacity calculation,  which is  enabled by the pro-
posed blockchain framework. With the blockchain smart contract,
the  automatic,  timely  and  trusted  update  of  operating  reserve
capacity  evaluation  result  can  be  achieved.  Thus,  the  response
mismatch resulting from Stage 1 uncertainty, i.e., the green blocks
in Figure 7, can be mitigated, as the shortage in reserve capacity is
assigned to other DERs. Comparing with the non-blockchain sce-
nario, our proposed framework reduces the reserve capacity mis-
match and brings a 73.28% decrease to the penalty of the VPP, as
shown in Table 3.

We  also  demonstrate  the  compensation  for  reserve  capacity
mismatch with the scenario in time slot 45, i.e., from 11:00 a.m. to

 

Table 3    Revenues and penalties of individual DERs and VPP

Entity Rcap  ($) Rmil  ($)
Rpen  ($)

w/o w Reduction

HVAC 1 187.2849 111.4927 16.3460 4.1143 −74.83%

HVAC 2 205.8219 143.1060 17.7571 4.1825 −76.45%

HVAC 3 268.7398 228.4214 12.3143 2.9473 −76.07%

Car park 189.6944 176.4313 11.1086 5.6599 −49.05%

BESS 1 303.3917 260.0131 21.8779 6.0958 −72.14%

BESS 2 351.6616 188.5902 21.2828 3.9001 −81.68%

VPP 1506.5943 1108.0547 100.6868 26.8998 −73.28%

w and w/o stand for the scenarios with and without blockchain, respectively
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Fig. 6    Daily operation results of different DERs.
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

0

0.5

1.0

1.5

2.0

Re
sp

on
se

 m
ism

at
ch

 o
f

V
PP

 (M
W

)

Stage 1 uncertainty
Stage 2 uncertainty

Fig. 7    Mismatch of response to the regulation signal of VPP.

ARTICLE Integrating blockchain to virtual power plant operation

 

140 iEnergy | VOL 2 | June 2023 | 133–142



11:15 a.m., as shown in Figure 8. In this time slot, the bid-winning
DERs are the car park, HVAC 3 and HVAC 2. When the regulation
signal arrives, the actual available capacity of HVAC 3 is less than
the  estimated  value,  as  denoted  by  the  yellow  blocks  in Fig.  8.
Without  the  proposed  framework,  the  regulating  capacity
assigned  to  HVAC  3  cannot  be  fully  provided,  which  leads  to  a
penalty from  the  market.  With  the  proposed  blockchain  frame-
work, the trusted and timely update of operating reserve capacity
evaluation results  can be realized.  The blockchain smart  contract
not  only  automizes  the  update  of  capacity  evaluation  result,  but
also limits the DER itself to be the only authorized entity to submit
an  update.  In  this  way,  the  VPP  operator  can  trust  the  updated
information,  be  aware  of  the  shortage  in  the  actual  available
capacity  of  HVAC  3,  and  is  able  to  invoke  the  spare  capacity  of
the car park and HVAC 2 for compensation. By utilizing the spare
capacity  from  other  bid-winners,  the  VPP  improves  its  response
performance and reduces the penalty from the market.
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Fig. 8    Compensation for reserve capacity mismatch in time slot 45.
 

4    Conclusions
In this paper,  we propose a blockchain-assisted operating reserve
framework for VPPs that aggregates multiple types of DERs. We
introduce  the  process  of  providing  operating  reserve  to  the  grid,
and  define  the  corresponding  functionalities  of  the  blockchain
components. Considering the heterogeneity of the DERs, we pro-
pose  a  unified  reserve  capacity  evaluation  model  to  facilitate  the
aggregation of DERs in the VPP. To mitigate the reserve capacity
mismatch  due  to  the  uncertainty  in  DER  operation  status,  we
propose  a  compensation  method  which  considers  the  available
reserve capacity in real-time. The proposed framework is verified
with a hardware-based experimental system. The results show that
our  proposed  method  can  effectively  coordinate  heterogeneous
DERs in the VPP to provide operating reserve,  without  violating
their  physical  constraints.  By  evaluating  the  available  reserve
capacity in real-time, the market penalty of the VPP can be signif-
icantly  reduced.  In  the  future  works,  more  aspects,  such  as  the
duration of response and the failure of response, can be considered
at the stage of DER evaluation to give a more general description
of the response capability  of  DERs,  which could further improve
the performance of the VPP in providing operating reserve.
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