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Abstract—The rapidly increasing residential air conditionings
(RACs) have been widely considered as good regulation resources
for improving the power system flexibility. However, due to
the heterogeneity of different consumers and the difficulty of
data acquisition in reality, the evaluation of large-scale RACs’
regulation capacity is a tricky problem. To address this issue,
this paper proposes an evaluation method based on Gaussian
Mixture Model (GMM). First, the regulation framework of large-
scale RACs is developed based on partial observable data. Then,
a calculation model of RACs’ regulation capacity is proposed
under the premise of guaranteeing heterogeneous consumers’
comfort requirements. On this basis, we develop the GMM of
RACs to evaluate their regulation capacities in the condition
of insufficient data acquisition. The expectation maximization
algorithm and Bayesian information criterion are utilized to
optimize the multidimensional parameters of the GMM. Finally,
we verify the proposed methods based on the realistic data in
a demonstration project in China. The results show that the
proposed method can evaluate the RACs’ regulation capacity with
more than 98% accuracy by measuring 1% RACs’ parameters.

Index Terms—Residential air conditioning, regulation capacity
evaluation, demand response, Gaussian mixture model.

I. INTRODUCTION

The increasing residential appliances have become the major
growth source in power consumption and played a more
important role in the power system [1]. Among different kinds
of appliances, residential air conditionings (RACs) are one of
the most important loads because they consume more than
half of the energy at home [2]. However, the operating power
of RACs is significantly affected by the changeable weather,
which is resulting in sharper peak power and threatening
the stable operation of the power system with the frequent
occurrences of extreme hot weather around the world [3].
To maintain the balance between supply-side and demand-
side, the power system needs larger regulation capacity [4].
Nowadays, the regulation capacity is mainly provided by gen-
erating units, e.g., thermal and gas generating units. However,
with the increase of RACs in demand-side and uncontrollable
renewable resources in supply-side, the regulation capacity in
the near future may be insufficient [5].

The progressed Internet of Things technologies make the
remote and smart control become easier to regulate large-
scale demand-side resources for providing regulation services,
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which is called demand response [6]. Considering the principle
that whoever started the trouble should end it, RACs account
for a substantial part of residential power consumption and
can provide huge regulation capacity to reduce the peak
power [7]. Furthermore, RACs can be regulated within the
consumers’ comfortable indoor temperature requirements by
utilizing the buildings’ thermal inertia [8]. Hence, RACs
have been widely considered as the most potential regulation
resources in demand-side and become a research hotspot
around the world. For example, Song et al. [9] model RACs
as thermal batteries to work with lithium-ion batteries for
providing regulation services for the power system. The RACs
are also equivalent to traditional thermal generating units to
participate in the frequency regulation services in [10]. Jiang
et al. [11] develop a combined optimization method to control
RACs for improving the power system flexibility.

Generally, RACs are regulated by a control center, which
is held by the distribution system operator, the load serving
entity, or the aggregator [12]. For convenience, the control
center is uniformly called the aggregator of RACs in this paper.
Before each round of dispatch, the aggregator should evaluate
the available regulation capacity of RACs and sumbit this data
to the system operator, so that the system operator can globally
optimize different kinds of regulation resources and reserve
sufficient regulation capacity for the system’s stable operation
[13]. However, compared with the regulation capacity provided
by generating units, the regulation capacity provided by RACs
is a complex problem. There are mainly three difficulties:

1) Insufficient data acquisition: One RAC’s regulation ca-
pacity is influenced by lots of factors [14], including
the building’s thermal capacity and thermal resistance,
the RAC’s rated power and energy efficiency ratio
(EER), the outdoor temperature, the real-time indoor
temperature, and the comfortable temperature require-
ments. Some data can be easily detected while some
data are difficult to be obtained by the aggregator. For
example, the RAC’s operating power and the building’s
indoor temperature can be detected by widely used smart
meters and temperature sensors, respectively. However,
the building’s thermal capacity and resistance are related
to such as the house area, volume, materials, windows
and cracks, which are not easy to be comprehensively
detected. Hence, aggregator has to evaluate the regula-
tion capacity of RACs based on partial observable data.
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2) Large-scale number of RACs: The capacity of one
thermal generating unit is around 60∼100MW or even
1000MW, while the rated power of one RAC is only
1∼3kW. That is to say, if RACs want to provide sig-
nificant regulation capacities for the power system as
generating units, around a number of 100,000 RACs
have to be aggregated and regulated at the same time.
The aggregator has to detect and process millions of
parameters to evaluate the regulation capacity, which
increases the computational complexity.

3) Heterogeneity: The consumers, RACs and buildings
are all highly heterogeneous. For example, consumers
have different comfortable requirements on their indoor
temperature. RACs have different brands, rated power
and EERs. Buildings have different areas, heights and
materials. The heterogeneity increases the evaluation
difficulty of large-scale RACs’ regulation capacity, es-
pecially in the condition of insufficient data acquisition.

Some studies attempt to solve this problem. For example,
Xie et al. [15] propose a probability density estimation method
to calculate the RACs’ regulation capacity. Lu [16] develops a
regulation capacity calculation model of RACs by considering
he consumers’ diversity to provide intra-hour balancing ser-
vices. However, these evaluation methods require to develop
the accurate model of each RAC and building, which can
not be used in the condition of insufficient data acquisition.
Cai et al. [17] and Javed et al. [18] propose to utilize the
most sophisticated artificial neural network for evaluating the
demand response, while the complexity and computation effi-
ciency of these methods increase the implementation difficulty
in practical power systems.

To address aforementioned issues, this paper proposes a
regulation capacity evaluation method of large-scale heteroge-
neous RACs based on Gaussian mixture model (GMM). The
main contributions are summarized as follows:

1) We develop the regulation framework of large-scale
RACs based on partial observable data. The calculation
method of RACs’ regulation capacity is proposed under
the premise of guaranteeing heterogeneous consumers’
comfort requirements.

2) We develop the GMM of RACs for evaluating regulation
capacities in the condition of insufficient data acqui-
sition. The expectation maximization (EM) algorithm
and Bayesian information criterion (BIC) are utilized to
optimize multidimensional parameters of the GMM.

3) The proposed models and methods are verified based on
the realistic data in a demand response demonstration
project in China. The results show that the evaluation
accuracy of RACs’ regulation capacity can reach 98%
by measuring 1% RACs’ parameters.

The remainder of this paper is organized as follows. Section
II presents the framework of the RACs’ regulation model. The
modelling and optimization methodologies of the GMM are
formulated in Section III. Numerical studies are presented in
Section IV. Finally, Section V concludes this paper.
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Fig. 1. The regulation framework of large-scale heterogeneous RACs.

II. FRAMEWORK AND REGULATION MODEL OF RACS

A. Regulation Framework of RACs

Fig. 1 shows the power system model and regulation
framework of large-scale RACs. Each RAC is connected
with the power system to get energy for generating cooling
capacity. The consumers are at liberty to use RACs based on
their temperature requirements. When RACs cause sharp peak
power and threaten the system stable operation on extreme hot
weather conditions, some RACs will be controlled to provide
regulation services for the power system. As shown in Fig. 1,
the operating power of RACs is cut down between tI and tII
to decrease the peak power.

In order to increase the willingness of consumers for partic-
ipating in regulation services, the comfortable requirements on
their indoor temperatures are guaranteed all the time. Hence,
each RAC’s regulation power and duration time should be
constrained in some ranges to avoid the uncomfortable indoor
temperature. For example, if a building’s indoor temperature
wants to be maintained under 25°C, the corresponding RAC’s
regulation power and duration time may be constrained to
be less than 1kW and 10min, respectively. Under the same
indoor temperature constraints and ambient environment, this
RAC’s available regulation power may be smaller with the
increase of duration time. Therefore, the RACs’ available
regulation capacities should consider the control instruction
on duration time, which will be illustrated in detail in the next
two subsections II-B and II-C.

Moreover, as the descriptions in Section I, the RACs’
regulation capacity is related to lots of factors while some of
data are difficult to be obtained. As shown in Fig. 1, here we
choose two kinds of most common observable data to evaluate
the regulation capacity: the RACs’ operating power and the
indoor temperature. The specific regulation capacity evaluation
method will be shown in section III.

B. Thermal-electrical Model of RACs

The thermal model of buildings installed with RACs can be
expressed as [16]:

Ci
∂θi(t)

∂t
=
θo(t)− θi(t)

Ri
−Qi(t), ∀i ∈ I,∀t ∈ T , (1)
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where θi(t) and θo(t) are the i-th building’s indoor tem-
perature and the outdoor ambient temperature at time t,
respectively. Symbols Ci and Ri are the thermal capacity
(in kJ/◦C) and the thermal resistance (in ◦C/kW) of the i-
th building, respectively. The prameter I is the set of RACs.
The cooling capacity from RACs Qi can be calculated as:

Qi(t) = ηiPi(t), ∀i ∈ I,∀t ∈ T , (2)

where ηi and Pi(t) are the EER and operating power of the
i-th RAC, respectively. Generally, the values of EER distribute
among 2.6∼3.6 [10]. With the incresae of EER, more cooling
capacity can be generated from the consumed power energy .

When the indoor temperature is maintained to be equal to
the set value, i.e., θi(t) = θset

i (t), the corresponding RAC’s
operating power can be calculated from Eqs. (1)-(2) as:

Pi(t) =
θo(t)− θset

i (t)

ηiRi
, ∀i ∈ I,∀t ∈ T . (3)

C. Regulation Capacity of RACs Under Comfort Constraints

When RACs are controlled to provide regulation services
for the power system, the most straight forward approach is to
shut off the RACs directly. Then the regulation capacity can
be easily obtained by summarizing all the RACs’ operating
power, as follows:

PRACs(t) =
∑N

i=1
Pi(t), ∀i ∈ I,∀t ∈ T . (4)

However, this ON-OFF method can probably impact con-
sumers’ comforts significantly. Most research and practical
projects have shifted to regulating RACs under the consumers’
comfort constraints. In this paper, it is assumed that all the
consumers can set their comfortable ranges of the indoor tem-
perature, i.e., θi(t) ∈ [θset

i (t)−θdev
i (t), θset

i (t)+θdev
i (t)]. Hence

our problem in this paper is how to evaluate the available
regulation capacity of RACs under the comfort constraints.

Based on Eqs. (1)-(2), the indoor temperature deviation
during the regulation process can be obtained as:∫ tII

tI

Cidθi(t) =

∫ tII

tI

θo(t)− θi(t)
Ri

dt−
∫ tII

tI

ηiP
II
i (t)dt, (5)

∀i ∈ I,∀t ∈ T ,

where P II
i (t) is the i-th RAC’s operating power during the

regulation period.
It is assumed that the operating power P II

i (t) and the
ambient temperature θo(t) keep constants during the regulation
process. Then the Eq. (5) can be calculated as:

P II
i =

θreg
o

ηiRi
− θII

i + θI
i

2ηiRi
− Ci(θ

II
i − θI

i)

ηiTD
, ∀i ∈ I, (6)

where TD is the regulation duration time (TD = tII − tI); θreg
o

is the ambient temperature during the regulation process; θI
i

and θII
i are the indoor temperature at the beginning and ending

time of the regulation, respectively. The indoor temperature θII
i

should be within the i-th consumer’s comfort constraints, i.e.,
θII
i ∈ [θset

i (tII)− θdev
i (tII), θ

set
i (tII) + θdev

i (tII)]. In the up regu-
lation services, the i-th RAC’s maximum regulation capacity

can be obtained by maximizing the indoor temperature, i.e.,
θII
i = θset

i (tII) + θdev
i (tII). Then we can get the i-th RAC’s

maximum regulation capacity as:

P reg
i = P I

i − P II
i , ∀i ∈ I, (7)

where P I
i is the i-th RAC’s operating power at time tI; P

reg
i

is the regulation capacity provided by the i-th RAC. Hence,
the total regulation capacity of RACs can be calculated by:

P reg
RACs =

∑N

i=1
P reg
i , ∀i ∈ I. (8)

III. REGULATION CAPACITY EVALUATION METHOD OF
LARGE-SCALE HETEROGENEOUS RACS

A. Regulation Capacity Evaluation Based on GMM

As shown in Eqs. (6)-(8), the RAC’s regulation capacity
depends on the indoor temperature θI

i and θII
i , the building’s

thermal resistance Ri and thermal capacity Ci, the RAC’s EER
ηi, the outdoor temperature θreg

o , and the regulation duration
time TD. It is assumed that the aggregator can monitor RACs’
operating power Pi(t) by smart meters and buildings’ indoor
temperature θi(t) by temperature sensors, i.e., parameters P I

i ,
θI
i and θreg

o can be detected at the beginning of the regulation.
The regulation duration time TD, the comfortable indoor
temperature θset

i and θdev
i are preset values.

Compared with the above observable parameters and preset
parameters, other parameters of the buildings (i.e., Ri, Ci), and
RACs (i.e., ηi) are hard to be obtained by the aggregator, espe-
cially when the number of RACs reaches million level. Here
we propose using the GMM to evaluate the total regulation
capcity of RACs (i.e., P reg

RACs) by sampling α% parameters of
RACs and corresponding buildings. Generally, the sampling
share α% is around 1% or even less. In this manner, the
difficulty of data acquisition can be substantially reduced.

For convenience, this paper labels the sampled α% of RACs
as full-info RACs with the set Iα ⊂ I, and labels the other
RACs as semi-info RACs with the set Iβ ⊂ I. The total set
of RACs I = Iα+ Iβ . Therefore, the regulation capacities of
RACs in the set Iα can be calculated based on Eqs. (6)-(8),
i.e., P reg

i,α are known values. The key problem is evaluating
the regulation capacity of RACs in the set Iβ , i.e., P reg

i,β are
unknown values to be evaluated based on the following data:

1) The RACs’ total number N , outdoor temperature θreg
o

and regulation duration time TD;
2) Parameters P I

i , θ
I
i, θ

set
i and θdev

i of all the RACs (∀i ∈ I);
3) Parameters Ri, Ci and ηi of α% RACs (∀i ∈ Iα ⊂ I).

B. Developing GMM for RACs

Firstly, the multidimensional vector of the full-info RACs’
parameters in set Iα can be formed as:

xi = [P I
i , θ

I
i, θ

set
i , θ

dev
i ]T , ∀i ∈ Iα. (9)

The total number of RACs in set Iα is assumed to be Nα.
Then the sample set of full-info RACs can be expressed as:

X = [x1,x2, ...,xNα
]. (10)
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As for an arbitrary vector x in X , the joint probability
density function (PDF) of the multidimensional vector x can
be expressed as:

N (x) =
1

(2π)
d/2|D|1/2

exp [−1

2
(x− u)TD−1(x− u)],

∀x ∈ X , (11)

where d is the dimension of the vector x. Symbolos u and
D are the mean value and covariance matrix of the vector x,
which can be expressed as:

u =


u1
u2
...
ud

 , D =


δ11 δ12 · · · δ1d
δ21 δ22 · · · δ2d

...
...

. . .
...

δd1 δd2 · · · δdd

 . (12)

The GMM is generally composed of multiple PDFs, which
can be calculated by:

f(x) =
∑K

k=1
πk · N (x|uk, Dk), (13)∑K

k=1
πk = 1, πk > 0, ∀x ∈ X ,∀k ∈ K, (14)

where K is the total number of components in GMM. Symbol
N (x|uk, Dk) indicates the k-th PDF. Symbol πk is the weight
of the k-th PDF, which is also called the prior probability
of choosing the k-th PDF. The summation of all the weights
should be equal to 1.

Based on the GMM in Eq. (13), the regulation capacities of
the i-th RAC in set Iβ can be obtained by:

P reg
i,β =

∑K

k=1
pk(xi) · P reg

k,α, ∀i ∈ Iβ ,∀k ∈ K, (15)

where pk(xi) is the probability of the vector xi belonging to
the k-th PDF in GMM; P reg

k,α features the expected regulation
power of RACs in set Iα in the k-th component of the GMM.
These two parameters can be calculated as follows:

pk(xi) =
πk · N (xi|uk, Dk)

f(xi)
, ∀i ∈ Iβ ,∀k ∈ K, (16)

P reg
k,α =

∑Nα

i=1 P
reg
i,α · pk(xi)∑Nα

i=1 pk(xi)
, ∀i ∈ Iα,∀k ∈ K. (17)

To sum up, the regulation power of RACs in the set Iβ can
be evaluated by Eq. (15) according to the probability function
in Eq. (16) and the expected regulation power in Eq. (17).

C. EM Algorithm for Optimizing the Parameters in GMM

The regulation power evaluation algorithm in Eqs. (15)-(17)
is based on the GMM in Eqs. (11)-(14), while the parameters
(K, πk, uk, Dk) in Eqs. (11)-(14) are unknown. Because the
sample set X of full-info RACs is an incomplete data set. We
do not know the vector xi belongs to which component k
in GMM and cannot use maximum likelihood estimation. To
address this issue, the EM algorithm is utilized here to obtain
the parameters in GMM. Specifically, there are two steps:
expectation-step (E-step) and maximization-step (M-step).

In the E-step, a latent variable vector z with K dimensions
is introduced to indicate that the vector xi is from the k-
th component. Hence, the data set X can be extended to a
complete data set Y:

Y = [xi, zi] = [xi, zi,1, zi,2, ..., zi,K ], ∀i ∈ Iα, (18)

where zi,k can only be equal to 0 or 1. The summation is equal
to 1, i.e.,

∑K
k=1 zi,k = 1. For example, when the data set X has

three components, the latent variable zi = (1, 0, 0) indicates
the vector xi is generated by the first components in the GMM.
Therefore, the prior probability of the vector xi generated by
the k-th component in the GMM can be expressed as pk(zk =
1|xi). For simplification, the pk(zk = 1|xi) is denoted by γi,k.
Based on the Bayesian formula, the γi,k can be calculated by:

γi,k , pk(zk = 1|xi)

=
πjk · N (xi|ujk, D

j
k)∑K

k=1 π
j
k · N (xi|ujk, D

j
k)
, (19)

∀i ∈ Iα,∀j ∈ J ,∀k ∈ K,

where j indicates the iteration times of the optimization for
calculating πjk, ujk and Dj

k, i.e., j = [0, 1, ..., J ].
Based on the Eq. (19), the log-likelihood function of the

GMM can be calculated by:

L =
K∑
k=1

(
Nα∑
i=1

γi,k lnπ
j
k +

Nα∑
i=1

γi,k lnN (xi|ujk, D
j
k)

)
, (20)

∀i ∈ Iα,∀j ∈ J ,∀k ∈ K.

In the M-step, the iteration model in the next time is
calculated by maximizing the log-likelihood function, which
can be expressed as:[

πj+1
k ,uj+1

k , Dj+1
k

]
= arg max(L),∀j ∈ J ,∀k ∈ K. (21)

Get derivative with respect to the variables (πjk, ujk, Dj
k)

and let the equations be equal to 0:

∂L
∂πjk

= 0,
∂L
∂ujk

= 0,
∂L
∂Dj

k

= 0, (22)

we can get the optimized parameters (πj+1
k , uj+1

k , Dj+1
k ) for

the (i+ 1)-th iteration:

πj+1
k =

1

Nα

∑Nα

i=1
γi,k,∀i ∈ Iα,∀j ∈ J ,∀k ∈ K, (23)

uj+1
k =

∑Nα

i=1 γi,kxi∑Nα

i=1 γi,k
, ∀i ∈ Iα,∀j ∈ J ,∀k ∈ K, (24)

Dj+1
k =

∑Nα

i=1 γi,k‖xi − ujk‖2∑Nα

i=1 γi,k
,∀i ∈ Iα,∀j ∈ J ,∀k ∈ K.

(25)

D. Determination of the Component Number in GMM

Based on the Eq. (18)-(25), the parameters of the GMM can
be optimized. However, the total number of components in the
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Fig. 2. The distribution of full-info RACs’ initial operating power and
temperature differences between the outdoor and indoor.

Fig. 3. Bayesian information criterion for determining the component number
of GMM.

GMM is not optimized. The BIC is utilized in this paper to
select the best component number, as follows:

BIC = K lnNα − 2L̂. (26)

The BIC model considers the complexity and accuracy
of the GMM. The first item in the Eq. (26) features the
complexity, which is lower with the decrease of the parameters
K and Nα. The second item in the Eq. (26) features the
accuracy, which is higher with the increase of the maximum
value of the log-likelihood function L̂. Therefore, the GMM is
considered to be better with a smaller BIC value to decrease
the complexity and increase the accuracy.

IV. CASE STUDY

A. Test System

The test system is based on a realistic demand response
demonstration project in China. The total number of residen-
tial buildings and corresponding RACs N is 100,000. The
buildings’ thermal parameters are based on the design standard
for residential buildings (JGJ134-2010). The EER of RACs ηi
distributes among 2.6∼3.6. The set temperature of each RAC
θset
i distributes among 18∼27°C according to heterogeneous

consumers’ requirements. The maximum deviation of the
indoor temperature θdev

i is 2°C from the set values. The sample
parameter α% is set as 1%. At the beginning of the regulation,
the indoor temperature is generally near the set value in most
buildings, i.e., θI

i ≈ θset
i . To reduce the number of dimensions

and highlight the important factors on the regulation capacity,
without loss of generality, we can simplify the vector of RACs’
parameters xi in Eq. (9) into a two-dimensional vector [P I

i , θ
I
i].

Besides, considering the outdoor temperature has significant

Fig. 4. The clustering results of full-info RACs based on the GMM method
with 3 components.

Fig. 5. The clustering results of full-info RACs based on the GMM method
with 10 components.

influence on the regulation capacity of RACs as shown in
Eq. (1), here we pay attention to the differences between the
outdoor and indoor temperature, i.e., [P I

i , θ
reg
o − θI

i].
It is assumed that the regulation beginning time is at

12:30 am, and the regulation duration period TD is 10min.
The outdoor temperature θreg

o is 37°C. The test system is
implemented using Python with an Intel core i7-9700 CPU
@3.00 GHz with 16.0GB RAM.

B. Results of Regulation Capacity Evaluation

Fig. 2 shows the distribution of the full-info RACs’ initial
states. It can be seen that the operating power distributes
among 0∼7kW. The temperature differences between the
outdoor and indoor distribute among 10∼19°C, i.e., the RACs’
set temperatures are among 18∼27°C. On the whole, there
are mainly two kinds of RACs: i) small split RACs with the
operating power of 1∼2.5kW for cooling some single rooms;
ii) central RACs with the operating power of 3.5∼7kW for
regulating the whole house temperature.

In order to select the best component number in the GMM,
the BIC is calculated based on Eq. (26). As shown in Fig. 3, the
BIC can get the minimum value when the component number
K is set as 3. That is to say, K = 3 can get the best balance
between the accuracy and complexity of the GMM. When the
component number K is set larger than 3, the accuracy of
the GMM can get improved, while the complexity also gets
increased. It may also impact the generalization ability and the
computational efficiency, especially when there are large-scale
number of RACs. To illustrate this problem, the clustering
results of RACs based on GMMs with different component
numbers are shown in Fig. 4, Fig. 5 and Table I.
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TABLE I
RESULTS OF REGULATION CAPACITY EVALUATION BASED ON GMM

K Regulation Evaluation Computation Relative
capacity/MW accuracy/% time/s time/%

3 31.20 98.48% 24.50 100.00%
5 31.19 98.45% 27.63 112.78%

10 31.29 98.76% 32.04 130.77%
15 31.10 98.17% 37.44 152.82%
20 31.02 97.91% 43.03 175.63%

As shown in Fig. 4, there are three components. RACs in
component k = 0 represent some small split RACs with the
operating power of 1∼1.5 kW. This kind of RACs may be
mainly used in small bedrooms with a relatively higher set
temperature (23∼27°C). RACs in component k = 1 represent
some small split RACs with the operating power of 1∼3 kW.
This kind of RACs are similar with that in the component
k = 0 while with wider set temperature ranges (20∼26°C),
which may be mainly used in living rooms or some bedrooms
with lower RACs’ set temperature. RACs in component k = 2
have larger operating power (3.5∼7kW), which are mainly the
central air conditioning systems. Compared with split RACs in
the previous two components, the central RACs in component
k = 2 have relatively lower set temperature and consume more
energy. This is because the air tightness and thermal insulation
of large spaces are generally lower than the values in small
single rooms.

The above three components in Fig. 4 have different ex-
pected regulation capacities: P reg

0,α = 0.264 kW, P reg
1,α =

0.179 kW, and P reg
2,α = 0.590 kW. The P reg

1,α is less than
P reg
0,α, because the set temperature of most RACs in component
k = 1 is lower than that in component k = 0. To maintain
a lower indoor temperature, the RACs have to keep operating
in relatively higher power. Besides, the central RACs have
the largest expected regulation power because of their large
operating power. Compared with 3∼6 times operating power
than the RACs in component k = 0, the central RACs in
component k = 2 only have about twice regulation capacities
of the RACs in component k = 0. This is because the low
air tightness and thermal insulation equate to decreasing the
buildings’ thermal resistance, which is unfavorable for RACs
to provide regulation capacities.

Fig. 5 shows the clustering results of RACs when the
component number is set as 10. It achieves a more precise
classification of different RACs, while it may decrease the gen-
eralization ability and the computational efficiency. As shown
in Table I, based on the optimized GMM with the component
number K = 3, the evaluation accuracy of the regulation
capacity can reach 98.48% utilizing 24.50s computation time.
With the increase of component number, the computation time
is increased significantly. the evaluation accuracy is almost
unchanged or even lower because of insufficient generalization
ability in K = 20 scenario. This illustrates the effectiveness
of the proposed GMM and parameter optimization method for
evaluating large-scale RACs’ regulation capacity.

V. CONCLUSION

This paper proposes an regulation capacity evaluation
method of large-scale heterogeneous RACs based on GMM.

First, the regulation framework and calculation model of RACs
are developed in the premise of guaranteeing consumers’
comfort requirements. Then we propose an evaluation method
on RACs’ regulation capacity, which can carry out in the
condition of insufficient data acquisition. Finally, numerical
studies illustrate that the evaluation accuracy can reach 98.48%
by measuring 1% RACs’ parameters, which can promote the
development of demand response in smart grid paradigm.
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