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Abstract—Heating, ventilation, and air-conditioning (HVAC)
systems are ideal demand-side flexible resources to provide reg-
ulation services. However, finding the best hourly regulation
capacity offers for HVAC systems in a power market ahead of
time is challenging because they are affected by non-Gaussian
uncertainties from regulation signals. Moreover, since HVAC
systems need to frequently regulate their power according to
regulation signals, numerous thermodynamic constraints are
introduced, leading to a huge computational burden. This paper
proposes a tractable chance-constrained model to address these
challenges. It first develops a temporal compression approach,
in which the extreme indoor temperatures in the operating hour
are estimated and restricted in the comfortable range so that
the numerous thermodynamic constraints can be compressed
into only a few ones. Then, a novel convexification method is
proposed to handle the non-Gaussian uncertainties. This method
leverages the Gaussian mixture model to reformulate the chance
constraints with non-Gaussian uncertainties on the left-hand
side into deterministic non-convex forms. We further prove
that these non-convex forms can be approximated by mixed-
integer second-order cone constraints that can be efficiently
solved by off-the-shelf solvers. The optimality gap because of
this approximation is marginal under mild conditions. Numerical
experiments are conducted to validate the superiority of the
proposed method.

Index Terms—HVAC systems, demand-side flexibility, reg-
ulation capacity, chance-constrained programming, Gaussian
mixture model, convexification.

Manuscript received 23 January 2022; revised 1 May 2022; accepted
5 June 2022. Date of publication 10 June 2022; date of current
version 21 October 2022. This work was supported in part by the
Science and Technology Development Fund, Macau SAR, under Grant
SKL-IOTSC(UM)-2021-2023 and Grant 0003/2020/AKP, and in part by the
National Natural Science Foundation of China under Grant 52007200. Paper
no. TSG-00108-2022. (Corresponding author: Hongcai Zhang.)

Ge Chen, Hongxun Hui, and Yonghua Song are with the State Key
Laboratory of Internet of Things for Smart City and the Department of
Electrical and Computer Engineering, University of Macau, Macau, China.

Hongcai Zhang is with the State Key Laboratory of Internet of Things
for Smart City and the Department of Electrical and Computer Engineering,
University of Macau, Macau, China, and also with the Smart City Research
Center, Zhuhai UM Science and Technology Research Institute, Zhuhai
519031, China (e-mail: hczhang@um.edu.mo).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2022.3182000.

Digital Object Identifier 10.1109/TSG.2022.3182000

NOMENCLATURE

Indices

i Index of buildings.
j Index of Gaussian components.
k Index set of elements in vector α(x).
l Index set of short time slots in a hour (time

step is two seconds).
n Index sets of regulation signals.
t Index sets of hours.
τ Index set of the long duration in a hour.

Parameters

A Coefficient matrix.
Ci Heat capacity of building i (MWh/°C).
COPi Coefficient of performance of the HVAC

system in building i (MW/MW).
gi Heat transfer coefficient between indoor and

outdoor environments in building i (MW/°C).
hi Heat load from indoor sources in building

i (MW).
pmax

i , pmin
i Upper and lower bounds of HVAC’s power in

building i (MW).
Rda

t,i Day-head regulation capacity offer of building
i in hour t (MW).

rm
t , rrc

t unit revenues for regulation capacity and mil-
lage in hour t ($/MW).

γn, γ R
n Intercepts of lines introduced by piecewise

linearization.
ε Risk parameter.
ηt Unit price for electricity purchasing ($/MWh).
θmax

i , θmin
i Upper and lower bounds of the thermal com-

fort region in building i (°C).
θout

t Outdoor temperature at hour t (°C).
λn, λR

n slopes of lines introduced by piecewise lin-
earization.

μj, πj, �j Expectation, weighted coefficient, and covari-
ance matrix of the j-th Gaussian component.

σk Stand derivation of the k-th element of ξ j.
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Uncertainties

mt Regulation millage in hour t.
st,l The l-th regulation signal in hour t.
uτ , uτ Auxiliary uncertain parameters.
ξ j The j-th Gaussian component introduced by

Gaussian mixture model.
ω Generic form of uncertainties.

Variables

ECt Total cost in hour t ($).
pHV

t,l,i Actual power of the HVAC system in building
i at the l-th time slot in hour t (MW).

pha
t,i Hour-ahead power schedule of the HVAC

system in building i (MW).
qt,l,i Cooling supply to building i at the l-th time

slot in hour t (MW).
Rha

t,i Hour-ahead regulation capacity offer of build-
ing i in hour t (MW).

x Generic decision variable.
yj Auxiliary variable for reformulating chance

constraints.
z Auxiliary binary variable introduced by piece-

wise linearization.
θ in

t,l,i Indoor temperature of building i in the l-th time
slot in hour t (°C).

ρj Auxiliary variable for expressing vector α(x)

in an exponential manner.

I. INTRODUCTION

THE GROWING penetration of renewable energies in
power systems reduces fossil fuel consumption and car-

bon emissions. However, the intermittent and stochastic char-
acteristics of renewable energies may lead to supply and
demand imbalance, which severely threatens the stability of
power systems [1]. To support the stable and economic oper-
ation of power systems, more demand-side flexible resources
are needed for providing regulation services by controlling
their power schedules [2].

Heating, ventilation, and air conditioning (HVAC) loads are
one of the most promising demand-side flexible resources
because of the building’s inherent ability to store heat-
ing/cooling power [3], [4]. To utilize the flexible HVAC
systems for regulation services, the corresponding regulation
capacity offers need to be reported to the power market in
advance [5]. The power market can collect all the regula-
tion capacity offers to design regulation signals. Then, HVAC
systems can follow regulation signals and adjust their power
scheduling to earn regulation revenue [6], [7]. Since this
revenue is in proportion to the regulation capacity offers,
increasing attention has been paid to quantifying the poten-
tial regulation capacity for HVAC systems. For example, [8]
proposed a geometric approach to characterize the aggre-
gated regulation capacity of HVAC systems. Reference [9]
proposed a robust-based method to quantify the HVAC’s
regulation capacity in distribution networks. Reference [10]
leveraged deep learning techniques to develop a model-free
method to determine the best regulation capacity for HVAC

systems. Because one HVAC system’s thermal inertia is lim-
ited, its regulation capacity can get affected by uncertain and
biased regulation operations. However, most of the afore-
mentioned papers do not consider the impacts of regulation
signals, which may overly estimate HVAC’s regulation capac-
ity and violate the corresponding building’s indoor thermal
comforts.

Nevertheless, taking regulation signals into considera-
tion is challenging because they are highly stochastic and
unpredictable. To address this issue, some papers treat
signals as uncertainties and leverage robust optimization
to design perfectly safe scheduling strategies for flexible
resources [11], [12]. However, robust optimization methods
do not allow any constraint violation for all realizations
of uncertainties [13], so their solutions are usually overly
conservative. An alternative choice is chance-constrained pro-
gramming (CCP). CCP only requires that the probability of
meeting critical constraints is above a certain level, while
low-probability constraint violations are allowed [14], [15].
Unfortunately, applying CCP still faces the following two
challenges:

1) According to our statistics for the whole-year regD
signals from the PJM regulation market in 2020 [5],
the uncertain regulation signals do not follow Gaussian
distribution. However, the most widely used reformula-
tion for CCP is based on the Gaussian assumption of
uncertainties [15]–[17]. Thus, applying this Gaussian-
assumption-based method may lead to infeasible solu-
tions. Some other scholars proposed distributionally
robust chance-constrained methods (DRCC) to handle
non-Gaussian uncertainties. Based on some statisti-
cal information of the uncertainties, e.g., moments or
Wasserstein distances, DRCC constructs an ambigu-
ity set to cover possible distributions and requires the
probabilistic constraints to be robust to this ambiguity
set [18], [19]. Since ambiguity sets can cover non-
Gaussian distributions, DRCC can handle non-Gaussian
uncertainties and has been used for scheduling flexi-
ble sources under uncertain regulation signals [20], [21].
However, DRCC may result in overly conservative solu-
tions and dramatically reduce the regulation revenue
because the ambiguity set may cover some distributions
that are much different from the true one.

2) The regulation signal updates frequently (e.g., RegD
signal updates every two seconds in the PJM mar-
ket [5]). Since the HVAC power needs to be regulated
to follow these signals, numerous constraints need to
be involved in order to ensure thermal comforts cor-
responding to each regulation signal. This will make
the CCP computationally expensive, especially for the
methods that involve many additional variables and
constraints for each chance constraint (e.g., scenario
approach [22], [23], sample average approximation [24],
conditional value-at-risk approximation [25]).

To overcome the first challenge, several papers combined
the Gaussian mixture model (GMM) with CCP. GMM is a
universal approximator of probability densities, and any non-
Gaussian distribution can be approximately fitted with a finite
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number of Gaussian components [26]. In [27], [28], GMM
was used to fit the non-Gaussian renewable energy uncertain-
ties. Then, the chance constraints were directly reformulated
into tractable forms based on the quantile of uncertainties.
In [29], an online-offline double-track approach was developed
to accelerate the fitting of GMM for the uncertainties of gas
demands. However, these GMM-based methods are only suit-
able for the chance constraints with right-hand side (RHS)
uncertainties.1 Considering that the regulation signal uncer-
tainties are on the left-hand side (LHS), these methods are
still inapplicable.

Unlike the first challenge, there are only very few papers
that have tried to tackle the second challenge. In fact, most
published papers, including [11], [12], [21], only required the
satisfaction of constraints with low temporal resolutions, while
the intermediate variable variations between two neighboring
time slots were ignored. Thus, although this manner can reduce
the constraint number, it cannot always guarantee feasibility.
For example, [21] only restricted that constraints should be
satisfied every five minutes, e.g., at t ∈ {5min, 10min, . . . ,

55min, 60min}. However, it cannot guarantee that there is no
violation within every five minutes, e.g., at t = 7min.

To overcome the aforementioned two challenges, we pro-
pose a tractable chance-constrained model to optimize the
regulation capacity offering for HVAC systems. The specific
contributions are threefold:

1) We propose a chance-constrained model to determine
the hour-ahead regulation capacity offers for HVAC
systems in the PJM market. This model considers the
impacts of non-Gaussian uncertainties from regulation
signals. Moreover, the thermodynamic constraints are
built according to the updated frequency of regulation
signals (i.e., every two seconds) so that indoor thermal
comforts can be properly maintained.

2) To address the intractability from non-Gaussian uncer-
tainties on the LHS, we propose a mixture-model-
based convexification method. It first leverages GMM
to reformulate each chance constraint with non-Gaussian
LHS uncertainties into a deterministic non-convex form.
Then, this non-convex reformulation is equivalently re-
expressed as an exponential form. Based on piecewise
linearization, we further prove that this exponential
form can be approximated by a SOCP constraint with
only a few binary variables, which can be efficiently
solved by off-the-shelf solvers. Moreover, the optimality
loss introduced by this approximation is also marginal
under mild conditions. To the best of our knowledge,
this is the first time that GMM-based methods can be
extended to chance constraints with LHS uncertainties
from regulation signals.

3) To reduce the computational burden brought by the
huge number of thermodynamic constraints, we pro-
pose a temporal compression method. In this method,
we first estimate the maximum and minimum indoor

1Consider a linear constraint aᵀx ≤ b. If the uncertainty is the vector a,
then we call it “left-hand side (LHS) uncertainty”; if the uncertainty is in the
constant b, then it is called “right-hand side (RHS) uncertainty”.

Fig. 1. (a) System configuration of scheduling HVAC systems to provide
regulation services and (b) schema of hour-ahead regulation capacity offers
in the PJM market.

temperatures over a long time duration based on the
monotonicity of the thermodynamic model. Then, by
restricting the estimated extreme temperatures in the
comfortable range, all thermodynamic constraints in this
long time duration can be replaced by only a few ones,
which significantly enhances computational efficiency.

Besides, numerical experiments are conducted to validate the
benefits of the proposed approach. The results show that it
can achieve much less conservative results than the state-of-art
DRCC methods with desirable optimality.

The remaining parts are organized as follows. Section II
describes the problem formulation. Section III presents the
details of the proposed mixture-model-based convexification
method. Section IV shows simulation results and Section V
concludes this paper.

II. PROBLEM FORMULATION

We consider an aggregator strategically operating a cou-
ple of HVAC systems to provide regulation capacities in the
PJM market. The aggregator offers the regulation capacity to
the market, and the market sends regulation signals to the
aggregator to guide the power regulation of HVAC systems, as
shown in Fig. 1(a). As required, the aggregator needs to offer
the regulation capacity to the market at least one hour ahead,
as shown in Fig. 1(b). For example, the capacity offer for
3:00pm-4:00pm should be reported before 2:00pm. In order to
maximize its regulation revenue, the aggregator need to prop-
erly design the power schedule of HVAC systems, i.e., pha

t , and
accurately estimate their corresponding regulation capacities,
i.e., Rha

t . Because buildings have limited thermal inertia, their
regulation capacities are significantly affected by the uncer-
tain regulation signals, which should be explicitly considered.
This paper aims to determine the optimal hour-ahead regula-
tion offers for HVAC systems under the impact of uncertainties
from regulation signals. Meanwhile, thermal comforts should
be also maintained to guarantee the HVAC systems’ quality
of services.

Since the regulation signal in PJM updates every two sec-
onds, we divide the operating hour into 1800 time slots with
l ∈ L as their indexes and �L = 2s as the time step size.
By using i ∈ I to index HVAC systems, the thermodynamic
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model of one building can be expressed as:

Ci
dθ in

i

dt
= gi(θ

out − θ in
i ) + hi − qi,∀i ∈ I, (1)

where Ci and gi are the building heat capacity and heat transfer
coefficient between indoor and outdoor environments, respec-
tively; θ in

i and θout are the indoor and outdoor temperatures,
respectively; hi and qi denote the heat load contributed by
indoor sources (e.g., electronic devices) and cooling supply
from HVAC systems, respectively.

Since the outdoor temperature θout and indoor heat load hi

vary slowly, we assume that they keep unchanged in the oper-
ating hour. When the HVAC system participates in regulation
services, their power need to respond to the regulation sig-
nals. Thus, the actual HVAC power at the l-th time slot in
hour t, i.e., pHV

t,l,i, and corresponding cooling supply, i.e., qt,l,i,
are expressed as:

pHV
t,l,i = pha

t,i − Rha
t,ist,l, ∀l ∈ L,∀i ∈ I, (2)

qt,l,i = COPi · pHV
t,l,i, ∀l ∈ L,∀i ∈ I, (3)

where st,l is the l-th signal in hour t; COPi is the coefficient of
performance of the HVAC system in building i. Eqs. (2)-(3)
indicate that the cooling supply keeps constant in each �l,
so (1) can be directly integrated from time l to l + �l:

θ in
t,l,i = ain

i θ in
t,l−1,i + aout

i θout
t + ah

i ht

+ aq
i

(
pha

i,t − Rt,ist,l−1

)
, ∀l ∈ L/{0},∀i ∈ I, (4)

where parameters ain
i , aout

i , ah
i , and aq

i are calculated by:
⎧⎨
⎩

ain
i = e

− gi
Ci

�l
, aout

i = 1 − e
− gi

Ci
�l

,

ah
i = 1

gi

(
1 − e

− gi
Ci

�l
)
, aq

i = −COPi
gi

(
1 − e

− gi
Ci

�l
)
.

(5)

Eq. (4) indicates that buildings have thermal inertia: The
indoor temperature θ in

t,l,i is affected by the heat loads and
cooling supplies in previous time slots. In other words, build-
ings have inherent ability to store heating/cooling energy.
Thus, we can properly control HVAC systems’ power sched-
ules following regulation signals to provide regulation services
while satisfying thermal comfort requirement [30]. Since st,l

is uncertain, both the actual HVAC power pHV
t,l,i and indoor

temperature θ in
t,l,i are also uncertain according to (2)-(4).

Considering that small thermal discomforts can be temporarily
tolerated, we employ CCP to describe the thermal com-
fort requirement. CCP controls the feasible region of the
optimization problem to guarantee that the probability of meet-
ing critical constraints is above a certain level [14], [15], while
low-probability constraint violation is allowable. By apply-
ing CCP, desirable energy efficiency can be achieved, while
customer experiences can be also guaranteed with a high prob-
ability. The chance-constrained thermal comfort requirement is
expressed as:

⎧⎨
⎩
P

(
θ in

t,l,i ≤ θmax
i

)
≥ 1 − ε,

P

(
θ in

t,l,i ≥ θmin
i

)
≥ 1 − ε,

∀l ∈ L, ∀i ∈ I, (6)

where θmax and θmin are the upper and lower bounds of the
thermal comfort range, respectively; ε is the risk parameter.
The device limit requires that the HVAC power should always
stay in the allowable range, so a robust manner is used to
describe this limitation:

{
maxst,l pHV

t,l,i ≤ pmax
i ,

minst,l pHV
t,l,i ≥ pmin

i ,
∀l ∈ L, ∀i ∈ I, (7)

where pmax
i and pmin

i are the upper and lower bounds of
the HVAC power, respectively. Since the regulation signal is
restricted in [−1, 1], Eq. (7) can be reformulated as follows
according to (2):

pha
t,i + Rha

t,i ≤ pmax
i , pha

t,i − Rha
t,i ≥ pmin

i , ∀i ∈ I. (8)

In the PJM market, the hour-ahead regulation capacity offers
are only allowed to be reduced from the corresponding day-
ahead offers, i.e., Rda

t,i , as follows:

0 ≤ Rha
t,i ≤ Rda

t,i, ∀i ∈ I, (9)

where Rda
t,i is determined one day ahead, so it is a known

parameter when we optimize the hour-ahead offer Rha
t,i .

Our objective is to minimize the total cost ECt, which equals
to the energy cost minus the regulation revenue:

ECt =
∑

i

∑
l∈L

ηtp
HV
t,i,l�l −

∑
i

(rrc
t + rm

t mt)R
ha
t,i, (10)

where the first and second terms on the RHS of (10) repre-
sent the energy cost of HVAC systems and revenue from the
HVAC power regulation. Symbol E denotes the expectation
operator; ηt is the price for electricity purchasing at hour t;
�t = 1h is the operating time duration; rrc

t and rm
t are the unit

revenues for regulation capacity and millage, respectively; mt

is the regulation millage, which is defined as:

mt =
∑

l

∣∣st,l+1 − st
∣∣. (11)

Considering st is uncertain regulation signals, the regulation
millage mt is also uncertain in this optimization problem.

Finally, the optimization problem is formulated as:

min
Rha

t,i,p
ha
t,i,∀l,∀i

E(ECt)P1, s.t.: Eqs. (2)-(6) and (8)-(10). (P1)

Solving P1 is quite challenging. On the one hand, due
to the high update frequency of regulation signals, Eq. (6)
introduces numerous thermodynamic constraints, leading to
computational intractability. On the other hand, in (6), the
signal uncertainties do not follow the Gaussian distribu-
tion. Therefore, the Gaussian-assumption-based models used
in [15]–[17] can not be directly applied. Moreover, they are
LHS uncertainties due to the multiplication term Rt,ist,l−1,
where Rt,i is a decision variable and st,l−1 is an uncertain
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parameter. As a result, the GMM-based methods proposed
in [27]–[29] are also inapplicable.2

III. SOLUTION METHODOLOGY

To overcome the aforementioned challenges, we first pro-
pose a temporal compression approach to reduce the ther-
modynamic constraint number. Then, a mixture-model-based
convexification method is developed to reformulate the chance
constraint with non-Gaussian uncertainties, i.e., Eq. (6), into
second-order cone programming (SOCP) forms. For simplic-
ity, we omit the subscripts t and i in this section.

A. Temporal Compression

The key idea of the proposed temporal compression is to
estimate the maximum and minimum indoor temperatures in
the operating hour. Then, by restricting these extreme indoor
temperatures in the comfort range, the thermodynamic con-
straint number in (6) can be significantly reduced. For exam-
ple, the first line in (6), i.e., P(θ in

l ≤ θmax) ≥ 1 − ε,∀l ∈ L,
contains 1800 constraints. However, once the maximum indoor
temperature in the operating hour, i.e., θ = maxl∈L θl is esti-
mated, the 1800 constraints can be replaced by only one single
constraint P(θ ≤ θmax) ≥ 1−ε. Thus, the key problem is how
to estimate these maximum and minimum indoor temperatures.

According to (4), the l-th indoor temperature in hour t, i.e.,
θ in

l , is expressed as:

θ in
l = ainθ in

l−1 + aoutθout + ahh + aq(pha − Rhasl−1)

= ain
(

ainθ in
l−2 + aoutθout + ahh + aq(pha − Rhasl−2)

)

+ aoutθout + ahh + aq(pha − Rhasl−1)

= · · · · · ·
= Rha[As]l + fl, ∀l ∈ L/{0}, (12)

where A is a coefficient matrix and defined as follows:

A = −aq

⎡
⎢⎢⎢⎣

1 0 · · · 0
ain

1 · · · · · · 0
...

...
. . .

...

(ain
1 )|L|−1 (ain

1 )|L|−2 · · · 1

⎤
⎥⎥⎥⎦. (13)

Symbol |L| represents the length of set L. Vector s represents
[s0, s1, . . . , s|L|−1]. Symbol [As]l denotes the l-th element of
the product As. Function fl is defined as:

fl =
(

ain
)l

θ in
0 + aout 1 − (

ain
)l

1 − ain
θout

+ ah 1 − (
ain

)l

1 − ain
h + aq 1 − (

ain
)l

1 − ain
pha. (14)

2Consider a chance constraint P(αᵀx ≤ b) ≥ 1−ε. If it only contains RHS
uncertainties, i.e., b is a non-Gaussian uncertainty while a is a deterministic
parameter, then it can be equivalently reformulated as αᵀx ≤ F−1

b (ε), where

F−1
b (·) is the inverse of the cumulative density function of b. In this case, the

GMM-based methods proposed in [27]–[29] can employ GMM to estimating
the value of F−1

b (·) in advance. If the previous chance constraint contains

LHS uncertainty, i.e., a is uncertain, it is equivalent to F−1
αᵀx(1 − ε) ≤ b.

However, it is hard for GMM to estimate the value of F−1
αᵀx(1 − ε) before

solving the optimization problem because it is relevant to the decision variable
x. As a result, the GMM-based methods are inapplicable to the case with LHS
uncertainties.

Fig. 2. Schematic diagram for uniformly splitting the operating hour into
multiple shorter duration �τ , where �l = 2s denotes the update interval of
regulation signals; set Lτ contains the indexes of l in the τ -th time duration.

Based on (12), we must have:
{

maxl∈L θ in
l ≤ maxl∈L fl + Rha maxl∈L [As]l,

minl∈L θ in
l ≥ minl∈L fl + Rha minl∈L [As]l.

(15)

Thus, the maximum and minimum indoor temperatures can
be approximated by the RHS terms of (15). However, since
maxl∈L fl and maxl∈L [As]l may appear at different moments,
Eq. (15) may lead to overly conservative solutions. To mitigate
this conservativeness, we uniformly split the operating hour
�t = 1h into multiple shorter time duration �τ , as shown in
Fig. 2. Then, the extreme indoor temperatures in each �τ can
be approximated by the RHS terms of (16):
{

maxl∈Lτ
θ in

l ≤ maxl∈Lτ
fl + Rha maxl∈Lτ

[As]l,

minl∈Lτ
θ in

l ≥ minl∈Lτ
fl + Rha minl∈Lτ

[As]l,
∀τ ∈ T ,

(16)

where τ ∈ T is the index of the shorter duration; Lτ denotes
the index set of l in the τ -th duration, which is obtained
by uniformly splitting L into |T | parts. By adding a maxi-
mum/minimum operator over τ ∈ T on both sides of (16), we
have:{

maxl∈L θ in
l ≤ maxτ∈T

{
maxl∈Lτ fl + Rha maxl∈Lτ

[As]l
}
,

minl∈L θ in
l ≥ minτ∈T

{
minl∈Lτ fl + Rha minl∈Lτ

[As]l
}
.

(17)

Then, the extreme indoor temperatures in the operating hour
can be estimated by the RHS terms in (17).

Proposition 1: The approximation in (17) is less conserva-
tive than that in (15).

Proof: See Appendix A.
Based on (14), function fl is monotone with respect to l

because θ in
0 , θout, h, and pha keep unchanged in the operat-

ing hour. Thus, the maximum and minimum values of fl in
each �τ must appear at the boundaries, i.e., at l = τ

|L|
|T |

or l = (τ + 1)
|L|
|T | . As for the terms maxl∈Lτ

[As]l and
minl∈Lτ

[As]l, their values are uncertain but independent of
decision variables. Therefore, we can directly treat them as
two new uncertain parameters, i.e., uτ and uτ , as follows:

uτ = max
l∈Lτ

[As]l, uτ = min
l∈Lτ

[As]l, ∀τ ∈ T . (18)

Finally, Eq. (6) can be replaced by:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

(
fl=τ

|L|
|T |

+ uτ Rha ≤ θmax
)

≥ 1 − ε,

P

(
fl=(τ+1)

|L|
|T |

+ uτ Rha ≤ θmax
)

≥ 1 − ε,

P

(
fl=τ

|L|
|T |

+ uτ Rha ≥ θmin
)

≥ 1 − ε,

P

(
fl=(τ+1)

|L|
|T |

+ uτ Rha ≥ θmin
)

≥ 1 − ε,

∀τ ∈ T . (19)
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Fig. 3. The probability distribution of (a) uτ and (b) uτ with τ = 2
when |T | = 10. The blue and orange lines represent the fitting results of
the Gaussian-assumption-based model and GMM, respectively. Obviously,
the uncertainties do not follow Gaussian distribution but can be well fitted
by GMM.

Based on (17), any feasible solution of (19) must be also fea-
sible for the chance constraint (6). Thus, Eq. (19) is a safe
approximation of (6). Moreover, the thermodynamic constraint
number is reduced from 2 · |L| to 4 · |T | (note that |T | � |L|),
which significantly reduces the computational burden.

Based the whole-year regD signals from PJM in 2020 [5],
the uncertainties uτ and uτ do not follow Gaussian distribu-
tion, as shown in Fig. 3. Moreover, these uncertainties are on
the LHS in (19) because they are multiplied with a decision
variable Rha. Thus, Eq. (19) is still hard to deal with.

B. Mixture-Model-Based Convexification Approach

To address the intractability caused by the non-Gaussian
LHS uncertainties in (19), a mixture-model-based convexifi-
cation approach is proposed. We first introduce GMM to fit
the original non-Gaussian uncertainties with multiple Gaussian
distributions. Then, we reformulate (19) into determinis-
tic non-convex forms. Finally, we propose tractable SOCP
approximations for these non-convex constraints.

1) Introduction of GMM: GMM can approximate the dis-
tribution of non-Gaussian variable ω with multiple Gaussian
distributions [26]:

pNG(ω) =
∑
j∈J

πjp
(
ξ j|μj,�j

)
, (20)

where pNG(ω) is the probability density function (PDF) of
ω; j ∈ J is the index of the Gaussian component; πj is the
weight of component j, and

∑
j∈J πj = 1; p(ξ j|μj,�j) repre-

sents the PDF of a Gaussian uncertainty ξ j; μj and �j are the
expectation and covariance of ξ j, respectively. Based on the
historical samples of ω, the three parameters πj, μj, and j

can be estimated based on the Expectation Maximization algo-
rithm [15]–[17]. Fig. 3 provides an example to demonstrate the
excellent fitting power of GMM.

2) Deterministic Reformulations of Chance Constraints:
The generic form of the chance constraints in (19) can be
expressed as follows:3

P
(
α(x)ᵀω ≤ β(x)

) ≥ 1 − ε. (21)

3Note here we only consider the uncertainties from regulation signals but
do not involve the uncertainties from heat loads ht . Nevertheless, even if ht
is uncertain, we can still express the chance constraint (19) into the generic
form (21). As a result, the proposed convexification method can easily handle
the uncertainties from ht .

The detail expressions of α(x) and β(x) for each constraint is
given in Appendix B.

To reformulate (21), we introduce the following Lemma.
Lemma 1: If the PDF of the uncertainty ω is approximated

by GMM, i.e., Eq. (20), then we have [31]

P
(
α(x)ᵀω ≤ β(x)

) =
∑
j∈J

πjP
(
α(x)ᵀξ j ≤ β(x)

)
. (22)

By introducing an auxiliary variable yj for each Gaussian
component, Eq. (21) can be converted into:

P
(
α(x)ᵀξ j ≤ β(x)

) ≥ yj, ∀j ∈ J , (23)∑
j∈J

πjyj ≥ 1 − ε, (24)

where yj ∈ [0, 1] because it is used to restrict a probability.
The uncertainty ξ j is the Gaussian component of GMM and
follows Gaussian distribution. Thus, based on the Gaussian-
assumption-based reformulations used in [15]–[17], Eq. (23)
can be further reformulated into the following deterministic
non-convex form when yj ≥ 0.5:

�−1(yj)

√
α(x)ᵀ�jα(x) + α(x)ᵀμj ≤ β(x),∀j ∈ J , (25)

yj ≥ 0.5,∀j ∈ J , (26)

where �−1(·) is the inverse of the cumulative distribution
function of the stand normal distribution. Note that an extra
constraint (26) is introduced, which may bring additional
conservativeness.

Remark 1: The reformulation (25) is intractable and can-
not be effectively handled by off-the-shelf solvers. On the
one hand, its first term �−1(yj)

√
α(x)ᵀ�jα(x) is non-convex

because both yj and α(x) are variables. On the other hand, it
is hard to give an analytical formulation for function �−1(·).

3) Convexification for Deterministic Reformulations: We
propose a convexification method to approximately reformu-
late the deterministic reformulation (25) into a tractable SOCP
form. Firstly, observing that all elements of α(x) in our
problem are always nonegative (See Appendix B), we can
re-express each element of α(x) in an exponential manner:

αk = eρk , ∀k ∈ K, (27)

where αk is the k-th element of α(x); ρk is an auxiliary
variable; K is the corresponding index set. Since yj ≥ 0.5,
function �−1(yj) is nonegative, so it can be also expressed as
an exponential form, i.e., �−1(yj) = eln �−1(yj). According to
the statistics for the whole-year regulation signals in 2020 [5],
the off-diagonal elements in the covariance matrix �j is close
to zero and much smaller than the diagonal ones. Thus, we can
use zero to replace the off-diagonal elements of �j. Then, by
substituting the above exponential expressions, the first term
in (25) can be converted into an L2-norm form:

�−1(yj
)√

α(x)ᵀ�jα(x) =
√∑

k

(
σkeρk+ln �−1(yj)

)2

=
∥∥∥σkeρk+ln �−1(yj), ∀k ∈ K

∥∥∥
2
, ∀j ∈ J , (28)
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Fig. 4. Graphs of function ln �−1(yj) (red line) and the proposed
inner approximation based on piecewise linear function maxn∈N {λnyj + γn}
(blue line). The blue dots, i.e., (y(n)

j , ln �−1(y(n)
j )), are points on function

ln �−1(yj). The first line, i.e., λ0yj + γ0 is the tangent of ln �−1(yj) at
yj = �(1). The rest lines are segments between two adjacent blue dots. Note
the piecewise linear function maxn∈N {λnyj + γn} is convex.

where σk is the standard deviation of the k-th element of ω,
and its value is always non-negative. Since both the expo-
nential and L2-norm functions are convex and element-wise
monotonically increasing, the L2-norm term in (28) is convex
if its power, ρk + ln �−1(yj), is convex according to con-
vex condition for composite functions [32]. Unluckily, this
power is non-convex in its domain. Nevertheless, we can find a
piecewise-linearization-based safe approximation to convexify
this non-convex power based on the following Proposition.

Proposition 2: In the domain of function ln �−1(yj), i.e.,
yj > 0.5, we have

ln �−1(yj
) ≤ max

n∈N
{
λnyj + γn

}
, ∀j ∈ J , (29)

where N = {0, 1, . . . , N} is the index set of lines. Symbol
λnyj + γn,∀n ∈ N represents different lines constructed by
piecewise linearization (shown in Fig. 4), i.e., λ0yj + γ0 is
the tangent at yj = �(1), while the rest lines, i.e., λnyj + γn,
∀n ∈ N /{0}, are line segments by connecting two points on
function ln �−1(yj) in sequence. Note the piecewise linear
function maxn∈N {λnyj + γn} is convex because its epigraph
is a convex polyhedron.

Proof: See Appendix C.
Observing that both the exponential and L2-norm functions

are monotonically increasing, the following inequality holds
according to Proposition 2:∥∥∥σkeρk+ln �−1(yj),∀k ∈ K

∥∥∥
2

≤
∥∥∥σkeρk+maxn∈N {λnyj+γn},∀k ∈ K

∥∥∥
2
,∀j ∈ J . (30)

Based on (28) and (30), the deterministic non-convex refor-
mulation (25) can be convexified as the following SOCP
form:∥∥∥σkeρk+maxn∈N {λnyj+γn},∀k ∈ K

∥∥∥
2
+ α(x)ᵀμj ≤ β(x),

∀j ∈ J , (31)

which is also equivalent to
∥∥σkeρk+λnyj+γn ,∀k ∈ K

∥∥
2 + α(x)ᵀμj ≤ β(x),

∀n ∈ N , ∀j ∈ J . (32)

Based on the convex condition for composite functions [32],
the first L2-norm term in (32) is convex because both

the exponential and the L2-norm functions are convex and
element-wise monotonically increasing. Thus, it is tractable for
off-the-shelf solvers. According to (30), the proposed reformu-
lation (32) is a conservative approximation of the non-convex
deterministic constraint (25). In other words, the feasible
set of (32) is a subset of the feasible set of (25). Thus,
the proposed reformulation can guarantee the feasibility of
solutions.

Remark 2: During the convexification for the original
chance constraint (21), we introduce two conservative approx-
imations. The first one is the additional constraint (26), while
the second one is the piecewise linearization used in (30)-(32).
These conservative approximations may affect the optimal-
ity of the proposed method. Since Eq. (24) requires that the
weighted average of yj should be no smaller than 1 − ε, the
lower bound of yj can be calculated by:

yj ≥ 1

πj

⎛
⎝1 − ε −

∑
i∈J ,i �=j

πiyi

⎞
⎠

≥ 1

πj

⎛
⎝1 − ε −

∑
i∈J ,i �=j

πi

⎞
⎠ = 1 − ε

πj
, (33)

where the first “≥” is based on Eq. (24); the second “≥”
holds because the domain of yj is [0, 1]; the “=” holds due
to

∑
j∈J πj = 1. In practice, the risk parameter ε is usually

small. Moreover, based on (21)-(22), a small πj indicates that
the i-th Gaussian component has very limited impact on the
original chance constraint. This implies that the j-th Gaussian
component may be redundant. Thus, we can decrease the
hyper-parameter |J | and retrain the GMM until the weight
of every Gaussian component is significant. With a small
ε and big πi, the value of yj is large according to (33).
In this case, constraint (26) can be naturally satisfied with-
out involving any additional conservativeness. Meanwhile,
according to Fig. 4, the approximation error introduced by
the piecewise linearization (30)-(32) is also insignificant.
As a result, with a small ε, the optimality loss intro-
duced by the proposed convexification method is commonly
marginal.

In the previous convexification, we introduce another non-
convex constraint, i.e., Eq. (27). Nevertheless, the vector α(x)

only contains one single variable Rha
t (See Appendix B), lead-

ing to only one non-convex constraint, i.e., Rha
t = eρ2 . We can

also use piecewise linearization to reformulate this non-convex
constraint into:

Rha
t = max

n∈N R
λR

n ρ2 + γ R
n , (34)

where N R is the index set of lines for piecewise linearization.
The n-th line, i.e., λR

n ρ2 + γ R
n , is constructed by connecting

the n-th and (n + 1)-th points on function eρ2 . Unlike (31),
the maximum operator appears on the RHS of “=” in (34). To
realize this strict equivalence, we need to employ the Big-M
method with auxiliary binary variable zn to eliminate the max-
imum operator so that (34) can be reformulated into a solvable
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Fig. 5. The whole procedure of the proposed method.

mixed integer form:
⎧⎨
⎩

Rha
t ≥ λR

n ρ2 + γ R
n , ∀n ∈ N R,

Rha
t ≤ λR

n ρ2 + γ R
n + M(1 − zn), ∀n ∈ N R,

1ᵀz = 1, z ∈ {0, 1}|N R|,
(35)

where M is a big number and |N R| is the length of set N R.
Remark 3: The auxiliary binary variable number, i.e., |N R|,

can be very small because only one single variable Rha
t needs

to be linearized based on (35), which guarantees computational
tractability.

Finally, since (10) is linear, the expectation of the total cost,
E(ECt), can be calculated by:

E(ECt) =
∑
i∈I

ηt

(
pha

t,i − Rha
t,is

avg
t

)
�t −

∑
i∈I

(
rrc

t + rm
t mavg

t
)
Rha

t,i,

(36)

where savg
t = E(st,l) =

∑
l∈L st,l
|L| and mavg

t = E(mt). Then, P1
can be reformulated into a mixed-integer SOCP problem:

min Eq. (36), (P2)

s.t.: Eqs. (8)-(9), {(24), (32)}(19), and (35),

where {(24), (32)}(19) represents that each chance constraint
in (19) is reformulated into (24) and (32) in P2.

C. Whole Procedure

The whole procedure of the proposed method is summa-
rized in Fig. 5. Specifically, the intractability of the original
thermodynamic constraint (6) is from the heavy computational
burden caused by the large-scale constraints and non-convexity
brought by non-Gaussian regulation signals. To make them
tractable, we first propose a temporal compression approach
to reduce the number of constraints, in which the extreme
indoor temperatures for a long duration are estimated and
restricted in the comfortable range. Then, the original thermo-
dynamic constraints can be replaced by only a few ones, i.e.,
Eq. (19). In the next step, we develop a mixture-model-based
convexification method to handle the non-convexity from the
non-Gaussian uncertainties. The GMM is first employed to fit
the non-Gaussian uncertainties with multiple Gaussian uncer-
tainties. Then, the chance constraint (19) is reformulated into
a deterministic non-convex form (25). We further exponen-
tially express these non-convex terms and equivalently convert

Fig. 6. (a) Heat load ht and outdoor temperature θout and (b) electric-
ity purchase price et , regulation capacity revenue price rrc

t , and regulation
performance revenue price rm

t .

TABLE I
PARAMETERS IN CASE STUDY

them into L2-norm forms with non-convex powers. Finally,
a piecewise linearized approximation is designed to handle
these non-convex power, resulting in a mixed-integer SOCP
reformulation, i.e., Eqs. (32) and (35). Since the proposed
reformulation contains only a few binary variables, it is
tractable and can be efficiently solved by off-the-shelf solvers.

IV. CASE STUDY

A. System Configuration

We validate the proposed method based on one large-
capacity HVAC system. The daily heat loads, outdoor temper-
ature, and unit prices for electricity purchasing and regulation
revenue are demonstrated in Fig. 6. The thermal parame-
ters of building and other parameters are listed in Table I.
Here the outdoor temperature is the air temperature of one
summer day in Macau [33]. The unit prices for electricity
purchasing/selling and regulation revenue are from the PJM
market [34]. The thermal parameters of building and heat loads
are generated based on a real building at the University of
Macau. We collect the whole-year regD signals from PJM in
2020 [5] as historical data. Based on these signal data, we
construct the samples of the uncertain parameters used in P2,
including mt in (11), uτ and uτ in (18). The whole dataset has
been uploaded in [35].
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Fig. 7. Results of (a) whole-day total cost, i.e.,
∑24

t=1 ECt , (b) maximum
violation probability, and (c) solving time obtained by different models. In
(b), the green and red regions represent the safe (i.e., the maximum violation
probability is smaller than the risk parameter) and unsafe regions (i.e., the
maximum violation probability is larger than the risk parameter).

All simulations are implemented based on an Intel Core
8700 3.20GHz CPU with 16GB memory. The corresponding
optimization problem is built by CVXPY and solved by
MOSEK.

B. Benchmarks

To demonstrate the superiority of the proposed approach,
three benchmarks are introduced.

1) B1: The Gaussian-assumption-based CCP used
in [15]–[17];

2) B2: The moment-based DRCC method used in [20];
3) B3: The Wasserstein-distance-based DRCC method used

in [21]. In this approach, the proposed temporal com-
pression method is also applied; otherwise, the compu-
tational burden will be too heavy and the out-of-memory
issue will occur. A total of 1000 samples are used for
constructing the ambiguity set.4

C. Model Comparison

1) Optimality, Feasibility, and Computational Efficiency:
Fig. 7 shows the results of the whole-day total costs (i.e.,

4The optimality of B3 can be improved by increasing the sample number
for constructing the ambiguity set [18]. However, the computational burden is
also proportional to this sample number. According to our test, if this sample
number is larger than 1000 (e.g., 1500), the out-of-memory issue occurs.

Fig. 8. Results of hour-ahead regulation capacity offers under ε = 0.15.

∑24
t=1 ECt), solving times, and maximum probability violation

under different risk parameters. The Gaussian-assumption-
based method B1 can achieve good optimality performance.
However, since the original uncertainties do not follow
Gaussian distributions, it may derive infeasible solutions,
i.e., the maximum violation probability is larger than the
given risk parameter. The two DRCC methods, i.e., B2 and
B3, can always ensure the feasibility of solutions. However,
their total costs are much higher than that of the proposed
method because they need to ensure the feasibility of all
the possible distributions in their ambiguity sets, including
some distributions that are quite different from the actual
one. The total cost of the proposed method is the lowest
among all methods when the risk parameter is small. With the
increase of the risk parameter, the optimality loss introduced
by the proposed method may be not negligible according to
Remark 2. Nevertheless, its optimality performance is still
much better than those of the two DRCC methods, B2 and
B3. Moreover, unlike B1, its maximum violation probability is
also always lower than the given risk parameter. These results
confirm the superior optimality and feasibility performances
of the proposed method.

In B1 and B2, each chance constraint is reformulated into
only one single SOCP constraint but introduces no additional
constraint, while some additional constraints, such as (35), are
necessary for the proposed method. Thus, the solving times
of B1 and B2 are lower than that of the proposed model.
Nevertheless, the solving time of the proposed method is only
around 1s, which is also acceptable in practice. In B3, numer-
ous additional constraints have to be introduced [18], so its
computational performance is the worst among all methods.

2) Hour-Ahead Regulation Capacity Offers: Fig. 8 sum-
marizes the hour-ahead regulation capacity offers obtained by
different methods under ε = 0.15. Note the results of B1 are
not listed here because B1 can not ensure the feasibility of
solutions. In all time, the hour-ahead regulation capacity offer
of the proposed method is much larger compared to the rest
models. As aforementioned, B2 and B3 have to satisfy con-
straints for all distributions in their ambiguity sets, so they
are more conservative. As a result, large margins need to be
reserved for the uncertainties in both B2 and B3, which shrinks
the potential regulation capacity. This result validates the better
optimality of the proposed method.

D. Sensitivity Analysis

1) Time Duration Number |T | for Splitting the Operating
Hour: We implement a case study with different |T | to
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Fig. 9. Results of (a) daily total cost and solving time, and (b) maximum vio-
lation probability under different time duration numbers, i.e., |T |, for splitting
the operating hour with ε = 0.01.

investigate its effects, and the corresponding results are shown
in Fig. 9. The risk parameter is 0.01, while the line num-
ber for the piecewise linearization |N |R is set as 50. With
the growth of |T |, the total cost decreases. According to
Proposition 1, if one time duration �τ is split into smaller
ones, the additional conservativeness introduced by the inner
approximation used in (16) can be further reduced. That is
to say, increasing |T | can improve the optimality of the
proposed method. Conversely, the solving time becomes larger
because more constraints are introduced according to (32).
Because increasing |T | decreases the conservativeness, the
maximum violation probability also grows with the increase
of |T |. Nevertheless, its value always keeps in the safe region,
which demonstrates the great feasibility of the proposed
method.

2) Line Number |N |R in (34): In (34), we employ piece-
wise linearization to approximate the regulation capacity
offer Rha

t . Fig. 10 demonstrates the maximum and aver-
age approximation errors, whole-day total cost, solving time,
and maximum violation probability under different line num-
bers |N |R. With the increase of |N |R, the piecewise lin-
earization used in (34) becomes more accurate, so both
the maximum and average approximation errors decrease, as
shown in Fig. 10(a). Once |N |R reaches 100, the impacts
of the approximation error on the optimal solution becomes
insignificant. Thus, even if we further increase |N |R from
100 to 500, the obtained total cost and maximum viola-
tion probability keep almost unchanged, as illustrated in
Figs. 10(b) and (c). Increasing |N |R introduces more binary
variables according to (35), so the solving time grows rapidly.
Nevertheless, in all these cases, the total cost is much less
compared to B1, B2, and B3. Moreover, the maximum viola-
tion probability is also always lower than the risk parameter.
These results further confirm the benefits of the proposed
method.

Fig. 10. Results of (a) approximation errors caused by the piecewise lin-
earization in (34), (b) whole-day total cost and solving time, and (c) maximum
violation probability under different line numbers, i.e., |N |R with ε = 0.01.
Note the error is defined as |eρ2 − Rha

t |.

E. Effects of Temporal Compression

We implement a new case study to demonstrate the effec-
tiveness of the proposed temporal compression method on
computational efficiency. In this case study, four scenarios
are compared. The first three employ the proposed temporal
compression method, while the last one does not. As afore-
mentioned, the time duration �t affects the optimality and
computational efficiency. Thus, here we also change the length
of �t in the first three scenarios to evaluate its effects. The cor-
responding results of solving times, total costs, and maximum
violation probabilities are illustrated in Fig. 11. Obviously,
employing temporal compression can significantly reduce the
computational burden. For example, when the risk parameter
equals 0.12, the solving times of the first three scenarios are
around 1s, 4s, and 7s. However, it reaches 317s in the scenario
without temporal compression. As introduced in Section III-A,
the temporal compression method introduces additional con-
servativeness. Therefore, the total costs of the scenarios with
temporal compression are larger than that of the one without
temporal compression. Nevertheless, reducing the length of
the time duration �τ can mitigate this conservativeness. For
instance, the total costs of the third scenario with �τ = 1min
are only slightly higher than those without temporal compres-
sion. The average diffidence of the total costs between the
third and last scenarios is only around 2%. For every sce-
nario, its maximum violation probability is always lower than
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Fig. 11. Results of solving times, total costs, and maximum violation prob-
abilities in the cases with and without the proposed temporal compression.
Here “TC” represents “Temporal Compression.” Symbol �τ is the shorter
time duration introduced in Fig. 2.

the corresponding risk parameter. These results confirm that
the proposed temporal compression method can significantly
improve the computational efficiency with desirable optimality
and feasibility.

V. CONCLUSION

This paper proposes a tractable chance-constrained model to
optimize the hour-ahead regulation capacity offers for HVAC
systems. It first proposes a temporal compression method to
compress the numerous thermodynamic constraints introduced
by frequently regulated HVAC power into only a few con-
straints. Then, a novel mixture-model-based convexification
approach is developed to overcome the intractability caused
by the non-Gaussian uncertainties from regulation signals.
By applying this approach, the chance constraints with these
non-Gaussian uncertainties on the LHS can be approximated
by tractable SOCP forms. The optimality loss introduced by
this approximation is also marginal under mild conditions.
Numerical experiments confirm that the proposed method can
achieve better feasibility performance compared to the widely
used Gaussian-assumption-based methods, while its solution
is also less conservative than the DRCC methods.

APPENDIX A

Proof of Proposition 1: We first define two new vectors v1
and v2, as follows:

v1 =
[

max
l∈Lτ

fl,∀τ ∈ T
]ᵀ

, v2 =
[

R min
l∈Lτ

[As]l,∀τ ∈ T
]ᵀ

. (37)

Then, based on the Minkowski’s inequality, we must have:

‖v1 + v2‖∞︸ ︷︷ ︸
RHS term of (17)

≤ ‖v1‖∞ + ‖v2‖∞︸ ︷︷ ︸
RHS term of (15)

. (38)

By substituting (37) into (38), we prove the maximum indoor
temperature estimated by (17) is no more than that of (15).
Based on the same way, we can also prove that the mini-
mum indoor temperature estimated by (17) is no less than
that of (15). This completes the proof.

APPENDIX B

For the first constraint in (19), the detail expressions of α(x)

and β(x) are as follows:

1st

{
α(x) = [

ain
τ , Rha

]ᵀ
, ω = [

θ in
0 , uτ

]ᵀ
,

β(x) = θmax − aout
τ θout − ah

τ θ
h − aq

τ pha,
(39)

where 1st represents the first constraint; parameters ain
τ =

(ain)
τ

|L|
|T | , aout

τ = aout 1−ain
τ

1−ain , ah
τ = ah 1−ain

τ

1−ain , and aq
τ = aq 1−ain

τ

1−ain .
Similarly, for the rest chance constraints, we have

2nd

{
α(x) = [

ain
τ+1, Rha

]ᵀ
, ω = [

θ in
0 , uτ

]ᵀ
,

β(x) = θmax − aout
τ+1θ

out − ah
τ+1θ

h − aq
τ+1pha,

(40)

3rd

{
α(x) = [

ain
τ , Rha

]ᵀ
, ω = [−θ in

0 ,−uτ

]ᵀ
,

β(x) = aout
τ θout + ah

τ θ
h + aq

τ pha − θmin,
(41)

4th

{
α(x) = [

ain
τ+1, Rha

]ᵀ
, ω = [−θ in

0 ,−uτ

]ᵀ
,

β(x) = aout
τ+1θ

out + ah
τ+1θ

h + aq
τ+1pha − θmin.

(42)

Note that only one single variable, i.e., Rha, is contained in
the four α(x) in (39)-(42).

APPENDIX C

Proof of Proposition 2: The convexity of function ln �−1(yj)

can be analyzed by its second-order derivative:

d2 ln �−1
(
yj
)

(
dyj

)2
= −φ

(
vj
) − vjφ

′(vj
)

v2
j

(
φ
(
vj
))3

, ∀j ∈ J , (43)

where vj = �−1(yj); φ(·) is the PDF of the standard normal
distribution and φ′(·) is its first-order derivative. Note the PDF
φ(·) is always nonnegative. Considering that a convex func-
tion has a nonnegative second-order derivative, we can get the
convex condition for function ln �−1(yj), as follows:

−φ
(
vj
) − vjφ

′(vj
)

v2
j

(
φ
(
vj
))3

≥ 0 ⇔ φ
(
vj
) + vjφ

′(vj
) ≤ 0

⇔ e−v2
j /2

√
2π

− v2
j

e−v2
j /2

√
2π

≤ 0 ⇔ v2
j ≥ 1. (44)

According to the definition of chance constraints, we have
yj ≥ 0.5. Thus, variable vj is non-negative. As a result, the
above inequality can be further converted into:

v2
j ≥ 1 ⇔ vj ≥ 1 ⇔ yj ≥ �(1). (45)

Similarly, its concave condition can be obtained by:

−φ
(
vj
) − vjφ

′(vj
)

v2
j

(
φ
(
vj
))3

≤ 0 ⇔ v2
j ≤ 1 ⇔ yj ≤ �(1). (46)

We uniformly select N + 1 points on function ln �−1(yj)

(recorded by y(n)
j ,∀n ∈ N ) and let y(0)

j = �(1) < y(1)
j < · · · <

y(N)
j . With points y(1)

j , . . . , y(N)
j , N-1 line segments can be con-

structed by connecting these points in sequence (denoted by
λnyj + γn,∀n ∈ N /{0}). Since function ln �−1(yj) is con-
vex when yj ≥ �(1), according to the definition of convex
functions, we must have:

ln �−1(yj
) ≤ max

n∈N /{0}
{
λnyj + γn

}
, for yj ≥ �(1). (47)
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For the region yj ≤ �(1), function ln �−1(yj) is concave.
According to the concave function’s first-order condition,
function ln �−1(yj) should always be equal to or below its
tangent. Thus, by letting λ0yj + γ0 as the tangent of function
ln �−1(yj) at yj = �(1), we have:

ln �−1(yj
) ≤ λ0yj + γ0, for yj ≤ �(1). (48)

By combining (47) and (48), we prove Proposition 2.
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