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Abstract—With the development of commercial buildings in
modern cities, the district cooling system (DCS) is rapidly
increasing due to its high efficiency for providing cooling services
to multiple buildings. By utilizing buildings’ inherent thermal
inertia, DCS has huge potential to participate in the electric-
ity market and provide regulation capacity. However, offering
the DCS’s regulation capacity ahead of the operating hour is
quite challenging. Its available capacity is changing with time
significantly due to multiple commercial buildings’ stochastic
cooling demand and the electricity market’s uncertain signals.
To address this issue, this paper proposes a strategy framework
to offer the DCS’s available regulation capacity for achieving
the maximum revenue while respecting the users’ comfortable
indoor temperature requirements. First, the DCS’s revenue model
is developed based on its regulation capacity and performance
score in the electricity market. Then, the regulation capacity
offering strategy in each time slot is formulated as a Markov
Decision Process (MDP). On this basis, the deep determined
policy gradient algorithm is implemented to iterate the policy
in the MDP to obtain the optimal results, which requires no
knowledge of the uncertainties or physical model. Finally, we use
the realistic RegA frequency regulation signals from PJM market
to validate that the proposed strategy is effective in evaluating
the system’s available capacity with high-quality performance.

Index Terms—Regulation capacity offering, demand response,
district cooling system, deep reinforcement learning.

I. INTRODUCTION

With the increasing penetration of intermittent and uncertain

renewable generation in power systems, more regulation re-

sources are required [1]. Traditionally, the regulation capacity

is provided by supply-side resources (e.g., thermal and hydro

generators), while these resources are being phased out and

may cause insufficient regulation capacities in the near future.

With the development of information and communication

technologies [2], demand-side resources (DSRs) are paid more

attention to provide regulation services for power systems.

This paper focuses on one type of emerging DSR, i.e., district

cooling system (DCS). First, DCS is increasing rapidly in

modern cities due to its high efficiency to provide cooling

services for multiple commercial buildings [3]. Thus DCS

will take a large share of modern cities’ power consumption

and have huge regulation potential. Second, one common DCS

possesses a quite large cooling capacity (up to 100MW) and

can be regarded as a natural aggregator to directly partici-

pate in the electricity market [4]. Third, DCS can modulate
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its power continuously over a wide range of time duration

with negligible impacts on the indoor temperature utilizing

buildings’ inherent thermal inertia [5]. Therefore, DCS is a

promising DSR while has been rarely studied previously.

The DCS’s main motivation for providing regulation ca-

pacity is to obtain extra revenues with negligible impact

on the indoor temperature [6]. In most electricity markets,

revenues are proportional to the regulation capacity offer and

performance score [7], i.e., a larger capacity offer or a higher

performance score can bring more revenues to the regulation

service provider. However, these two values go against each

other at most time. A too large capacity offer may lead to a

bad regulation performance and get a quite low performance

score, because the building’s thermal inertia is limited and

subject to its comfort requirements. If the score is lower than

the market’s access requirement, the DCS may be banned from

participating in the market anymore [7]. By contrast, a smaller

regulation capacity undoubtedly can decrease the revenue even

though the DCS gets a higher performance score. However,

it is quite challenging for DCS to give a adequate capacity

offering strategy ahead of the operating hour considering the

score constraints and buildings’ comfort requirements because

of the following reasons:

1) Uncertainty: The stochastic regulation signals from the

electricity market are hard to predict, because it is based

on the real-time balance of the whole power system.

Thus, it is difficult to ensure the actual regulation perfor-

mance. Furthermore, the random human behaviors and

ambient temperature can directly influence the buildings’

cooling demand and indoor temperature, which increase

the difficulty to identify the available capacities for

maintaining the comfort during the regulation process.

2) Complexity: A DCS is a networked system that serves

for over ten commercial buildings within a radius of

2 km. It has complex thermal dynamics that include

cooling power generating, transmitting and consuming

processes whose parameters cannot be obtained accu-

rately in practice. Thus the DCS is hard to be modelled.

3) Continuity of decision-making: The DCS’s regulation

capacity in each hour can directly impact the next

hour’s system operating states (e.g., the DCS’s power

consumption, the building’s indoor temperature), which

will further affect the next hour’s available regulation

capacity [8]. Thus, the optimal capacity offering strategy
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should consider the impacts among different hours, so

as to achieve maximum revenues in a long term.

To evaluate the regulation potential of HVAC, some re-

searchers have proposed relevant methodologies. D. Xie et

al. [9] develops a probability density estimation method to

evaluate the regulation capacity of large-scale aggregated

HVAC systems, which is based on an individual HVAC model.

J. Cai et al. [10] identifies the maximum available capacity

based on a pseudo-optimization method, while the proposed

strategy relies heavily on the accurate and steady model pa-

rameters. M. B. Anwar et al. [11] presents an extensive multi-

perspective method to assess the capacity of the aggregated

residential HVAC, where the capacity market needs to be

explicitly modeled. X. Li et al. [12] formulates the flexibility

assessment problem as a quadratic programming to minimize

the cost, based on the detailed thermal model of the aggregated

buildings. All the aforementioned evaluation methods requires

the accurate system model, which can not work for DCS.

Besides, their objectives mainly focus on the cost while the

performance score is not taken into account.

To address the above issues, we propose a model-free

method to evaluate the available DCS regulation capac-

ity based on deep reinforcement learning (DRL). DRL has

achieved great success in challenging decision-making prob-

lems, which can address the uncertainty and continuity prob-

lem efficiently [13]. Compared with the aforementioned liter-

ature, this paper’s main contributions include:

1) We develop a model for DCS to achieve maximum

revenues in frequency regulation markets, which consid-

ers the requirements from both the market performance

score and buildings’ temperature comfort.

2) We formulate the capacity offering problem as a Markov

Decision Process (MDP). The designed state space and

reward function in the MDP can effectively balance the

trade-off between the DCS’s revenue and the penalty

risk due to bad performance.

3) We develop a model-free strategy based on the deep

determined policy gradient algorithm. The proposed

strategy requires little knowledge of the accurate system

model and uncertainty distributions.

II. HOUR-AHEAD REGULATION CAPACITY OFFERING

This section describes an hour-ahead regulation capacity

offering problem of DCS for participating in the regulation

market, in which the DCS is assumed as a market price-

taker. The market environment is based on the PJM market,

which can be also adapted to other markets. The regulation

market closes 60 minutes before the operating hour, and all

participators’ regulation capacity offers should be determined

before the market closes [14].

A. Modelling of DCS

As shown in Fig. 1, a DCS is composed of one energy

station, multiple pipelines and buildings. Chillers in the energy

station, as the system’s main power consumer, produce chilled

water for buildings through pipelines. There are two isolated

Chiller

Building 1

VFD 
pumps

Chiller

Chiller

Building 2

Building I

Energy 
station

M

M

M

Second 
water loop

First 
water loop

Fig. 1. The operating framework of DCS.

water loops in the DCS to transport thermal energies. The first

water loop is the water cycle in pipelines, and the second water

loop is the water cycle in each building. The heat exchanging

process between two water loops is executed in each building’s

heat exchanger. Based on the energy balance, chillers’ power

consumption can be formulated as:

P ch
τ =

Qch
τ

COP
, ∀τ, (1)

Qch
τ = cw(T ch,r

τ − T ch,s
τ )

∑

i∈I
mI

i,τ , ∀τ, (2)

where P ch
τ and Qch

τ are chillers’ electricity power and cooling

power at time τ , in kW, respectively. The parameter COP is

the chiller’s coefficient of performance. Symbol cw is the heat

capacity of water, in kJ/(kg·◦C). Symbols T ch,r
τ and T ch,s

τ are

the supply water temperature and return water temperature of

the chiller at time t, in ◦C. The set I denotes the group of all

buildings. Symbol mI
i,τ is the ith building’s mass flow rate in

the first water loop at time t, in m3/s.

The chiller’s return water temperature T ch,r
τ in Eq. (2) is

determined by all buildings’ return water temperatures T I,r
i,τ

and corresponding mass flow rates mI
i,τ , which is given as:

T ch,r
τ =

∑

i∈I
mI

i,τT
I,r
i,τ

∑

i∈I
mI

i,τ

, ∀τ. (3)

Here, the building’s return water temperature T I,r
i,τ is deter-

mined by the exchanging heat Qi,τ between two water loops in

Fig. 1. The Qi,τ depends on the heat exchanger’s performance,

which can be calculated by:

Qi,τ =kiFi

(T II,r
i,τ − T I,s

i,τ )− (T II,s
i,τ − T I,r

i,τ )

ln[(T II,r
i,τ − T I,s

i,τ )/(T
II,s
i,τ − T I,r

i,τ )]
, ∀i ∈ I, ∀τ, (4)

where ki and Fi are heat exchangers’ heat transfer coefficient

and surface area, respectively. The temperatures T II,r
i and T II,s

i

are the ith building’s return and supply water temperatures in

the second water loop, respectively.

Based on the Eq. (6), the energy balance can be formulated

to express the temperature changes of the supply and return

water, as follows:

Qi,τ = mI
i,τ c

w(T I,r
i,τ − T I,s

i,τ ) · η
I
i, ∀i ∈ I, ∀τ, (5)

Qi,τ = mII
i,τ c

w(T II,r
i,τ − T II,s

i,τ ), ∀i ∈ I, ∀τ, (6)
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where ηI
i is the heat transfer efficiency from the first water

loop to the second water loop; mII
i,τ is the mass flow rate in

the second water loop at time τ .

Finally, the building’s water cycle supplies cooling capacity

to maintain comfortable indoor temperature. The thermal

dynamic process can be given as:

Di

∂TA
i,τ

∂τ
=

TO
τ − TA

i,τ

Ri

+ ζi,τ − ηII
i Qi,τ , ∀i ∈ I, ∀τ, (7)

where TA
i,τ is the ith building’s indoor temperature. Parameters

Di and Ri are the thermal capacity (in kJ/◦C) and thermal

resistance (in ◦C/W) of each building, respectively. Symbol

ζi,τ is the indoor heat loads (e.g., human behaviors and

equipment), in kW; ηII
i is the heat transfer efficiency from

the second water loop to the building.

B. Regulation Capacity Offering by DCS in Market

During the t-th operating hour, the DCS should regulate

its power consumption to follow the market signal, and then

get the hourly revenue rM
t according to its actual regulation

performance, as follows:

rM
t = Cch

t sM
t pt, ∀t, (8)

where Cch
t and sM

t are the capacity offer and regulation

performance score of the DCS, respectively; pt represents the

clearing price in the regulation market. The specific score

calculation rule is based on PJM manual [14]. Considering

that one DCS’s capacity is not large enough to influence the

price, we regard the DCS as a market price-taker. Therefore,

in this paper, the DCS aims to maximize the value of Cch
t sM

t .

Furthermore, considering that last hour’s capacity offer will

significantly influence the current hour’s offering strategy, the

DCS’s objective is to maximize the total cumulative revenue

during the continuous 24 hours as follows:

max
Cch

t

∑24

j=1
Cch

t sM
t pt, (9)

s.t.: sM
t ≥ sM,∆Ti,t ≤ ∆Ti, ∀i ∈ I, ∀t (10)

where s and ∆Ti are the requirements of markets’ perfor-

mance score and buildings’ comfortable temperature range,

respectively. It is noted that a regulation market has a minimum

performance score to access (e.g., sM ≥ 0.75 in PJM), which

further presents a challenge to the capacity offering – a too

large capacity offer may cause a quite low score that may

let the DCS to be kicked out of market; while a too small

capacity offer may cause a low revenue. This problem will be

addressed in the following section.

III. ONLINE CAPACITY OFFERING BASED ON DEEP

DETERMINED POLICY GRADIENT

This section formulates the capacity offering problem of

Eq. (9) as a Markov Decision Process (MDP) and adopts a

model-free strategy to achieve the optimal capacity offer.

As shown in Fig. 2, according to the state, the agent

determines the capacity offering before the market closes.

Then the agent receives the next state and hourly revenue after

Time(h)t t+1 t+2

Operating hourMarket close

Capacity offer

Current state

Provide regulation 
services

Obtain 
score

Reward

Action

t

P

Input 

Store
Noise   

Sample
1*( , , , )t t t tN s a r s +

Update Output  

Actor Critic

Fig. 2. The DDPG Scheme of Capacity Offering Problem.

the operating hour, which is stored as historical data to update

the agent’s offering strategy.

A. Preliminaries of an MDP

As a formulation of sequential decision making, MDP is

defined as a tuple 〈S,A,P,R, γ〉, where S is a state space,

A is an action space, P is a transition probability function, R
is a reward function and γ ∈ [0, 1] is a discount factor. In an

MDP, the decision maker is defined as an agent. At each time

stot t ∈ [0, T ], the agent observes the DCS’s operating state

st ∈ S and determines an action at ∈ A. Then it receives a

corresponding reward Rt ∈ R after executing the action. The

system state turns to st+1 from st, based on the transition

probability P(st+1|st,at). The sequence of states and actions

{s0,a0, s1, ...,aT−1, sT } is expressed by ι.
The determined mapping from a state space S to an action

space A is defined as a policy π: S → A. The objective of the

agent is to find an optimal policy that maximizes the expected

total reward J(π) as:

max
π

J(π) = E
ι∼π

[

∑T

t=0
γtRt

]

. (11)

To calculate the expected reward of a single action, an

important action-value function Qπ(s,a) is defined as:

Qπ(s,a) = E
ι∼π

[

∑T

t=0
γtRt|s0 = s,a0 = a

]

, (12)

where Qπ(s,a) denotes the expected reward taking action a

at state s following policy π.

B. Formulating Capacity Offering Problem as an MDP

In the DCS capacity offering problem, the system bidder is

treated as the agent who interacts with the regulation market.

The action determined by the agent at each time step is

offering the regulation capacity of the next operating hour:

at =
[

Cch
t

]

, ∀t ∈ T , (13)

where the scale of the action space |A| is 1. The state of the

DCS environment considers the information of both the market
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signal and buildings’ indoor temperature, which is useful for

prediction. The state is defined as:

st =
[

t, pt−1, P
ch
t−1,E[∆Tt],E[σ

s
t−1], f(σ

s
t−1)

]⊺

, ∀t ∈ T ,

(14)

∆Tt =
∑

i∈I
∆Ti,t, ∀t ∈ T , (15)

f(σs
t−1) = max

x
|

∫ x

0

σs
xdx|, ∀t ∈ T , (16)

where tH is the hour of the time t; ∆T represents the average

temperature deviation of all buildings’ indoor temperature; σs
t

is the market signal. E[∆Ti,t−1] reflects buildings’ available

regulation range for the next time step. E[σs
t−1] is the average

market signal in the last operating hour. The function f(σs
t−1)

represents the maximum accumulative adjustment in the power

consumption during last operating hour.

The DCS bidder aims at increasing the cumulative revenue

from regulation markets while keeping the buildings comfort-

able. In addition, to be eligible to participate in the market,

the regulation performance score sM should be above the

minimum requirement sM. The reward function is defined as:

Rt = κtC
ch
t sM

t pt − β(1− κt)
Cch

t

sM
t

, ∀t ∈ T , (17)

κt =

(

1 +
sM
t − sM

|sM
t − sM|

)

/2, ∀t ∈ T , (18)

where κt is designed to judge whether sM
t satisfies the required

value sM (i.e., when sM
t ≥ sM, κt = 1; Otherwise, κt = 0).

Symbol β is the penalty coefficient of the score violation.

It is noted that when κt equals to 1, the reward function Rt

represents the cumulative revenue in the market. In contrast,

when κt equals to 0, the reward function Rt is the negative of

the
Cch

t

sM
t

, which guides the agent to reduce the capacity offer

Cch
t or improve the regulation performance score sM

t .

IV. CASE STUDY

A. Test System

The test system is modelled based on a realistic DCS in

Hengqin, China. The energy station supplies chilled water

for 12 buildings, with a cooling capacity 144 MW. Based

on the DCS’s technical guidelines, the coefficient of perfor-

mance (COP) and heat transfer coefficient (ki) are 5 and

4.5 kW/(m2·◦C), respectively. The efficiency in two water

loops (ηI
i, η

II
i , ∀i ∈ I) are assumed to be 90%. The supply

chilled water temperature T ch,s
t is a constant with 3◦C, ∀t.

The heat capacity (cw) is 4.2 kJ/(kg·◦C), according to the

national standard in China. Buildings’ thermal capacity (Di)

and thermal resistance (Ri) are both proportional to their floor

areas ranging from 100,000 m2 to 300,000 m2. The indoor set

temperature (T set
i,τ ) is distributed in 20∼23◦C. The comfortable

temperature range is assumed T set
i,τ ± 1◦C when DCS provides

regulation services (i.e., |∆Ti,τ | ≤1).

The outdoor temperature TO
t is collected from the realistic

data in Zhuhai, China from January 1, 2020 to December

30, 2020. The market regulation instruction (σs
t) adopts the

00:00 06:00 12:00 18:00 24:00
-1.0

-0.5

0.0
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1.0
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Time
Fig. 3. The regulation signal from PJM in one day.
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 Episode reward
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Fig. 4. The reward during the training process.

realistic RegA signal from PJM in year 2020, as shown in

Fig. 3. In PJM, the capacity offer of the demand resource

(Cch
t ) should be larger than 1MW, and the performance score

(sM
t ) should be higher than 0.75. The score is calculated based

on the market rule. In addition, the hourly base power (P base
t )

of each participator is defined by PJM, using the participator’s

average power consumption of the same hour in last five days.

B. Training and Online Control

The objective of our agent is to give an hour-ahead capacity

offer for continuous 24 hours to obtain more cumulative

revenue in Eq. (9). The key parameters of the DRL algorithm

are set as Table I. Both the actor and critic networks are

composed of one input layer, two hidden layers (256x128) and

one output layer. The simulation is implemented using Python

with an Intel core i7 CPU @3.0 GHz and 16GB memory.

The agent’s reward during the training process is illustrated

in Fig. 4, where the higher reward means the better decision

0 4 8 12 16 20 24
0

15

30

45(b)

(a)

 Regulation capacity

Cch
 (M

W
)

Time (h)

0 4 8 12 16 20 24
0.0

0.5

1.0

 Perfermance score

sM

Minimum performance score

0

15

30

45
 Revenue

Cch
sM

Fig. 5. Capacity offer and performance score with the proposed DRL strategy.

TABLE I
PARAMETERS OF THE DRL CONTROLLER.

Symbols Definitions Values
β Violation penalty coefficient 0.1
γ Discount factor 0.9
K Mini batch size 100

u Mean of exploration noise 0

b Standard deviation of exploration noise 0.3
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Fig. 6. Power consumption with regulation services.
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Fig. 7. Building temperature deviation with regulation services.

made by the agent. To improve the training efficiency, the

agent ends one episode when its score is lower than the

required value (sM=0.75). According to the curve of the

episode reward, the reward converges to a stable and optimal

value after 500 episodes.

After training, the well-trained agent is applied in the online

controlling of DCS to offer hour-ahead capacities intelligently

for continuous 24 hours. The agent’s hourly capacity offer and

performance score are shown in Fig. 5. As shown in Fig. 5(a),

all performance scores are larger than the required minimum

score 0.75, and satisfy the market requirement during the

regulation process. It guarantees the DCS’s qualification to

be eligible for the market in the long term. It can be seen

from Fig. 5(b) that the DCS provides regulation services (i.e.,

Cch
t >0) for 17 hours, which means the DCS does not partic-

ipate in the market during the other 7 hours with Cch
t = 0.

Because sometimes the continuous regulation may lead to a

bad regulation performance and obtain a low score, it is better

to quit the market for an hour temporally and be well-prepared

for the next hour by recovering buildings’ indoor temperature.

C. Control Results Analysis

Based on the capacity offer strategy, Fig. 6 shows the DCS’s

power consumption in a day. The black curve represents the

system’s real power consumption and the red curve shows

the target power consumption. When DCS participates in the

market, the hourly target power is related to this hour’s base

power, regulation signal and corresponding capacity offer.

When DCS quits the market (Cch
t = 0), the target power equals

to the base power. It can be seen that two power curves fits

well when the DCS provides regulation services.

Fig. 7 shows all buildings’ temperature deviations from

their set values (∆Ti,τ ) in a day. The blue area in the figure

represents the comfortable deviation range, where ∆Ti,τ ∈
[−1, 1]. It can be seen that the temperature deviations are

always smaller than 1◦C (i.e., within the blue area), which

satisfies the buildings’ comfortable requirements. Moreover,

when buildings’ temperature deviation is uncomfortable (i.e.,

out of blue area), the building will quit AI controller and

ignore the regulation signal to recover its own indoor temper-

ature. Furthermore, it can be seen from Fig. 7 that the indoor

temperature deviations fluctuate less before 8:00 am. The first

reason is that the ambient temperature is relatively stable

compared with the following hours. The second reason is that

each building’s indoor heat loads (e.g., human behaviors and

ventilation rates) are almost constant at night, which causes

the similar indoor temperature deviations.

V. CONCLUSION

This paper proposes an hour-ahead capacity offering strat-

egy for the DCS to provide regulation services. To cope

with the uncertain market signal and complex physical model,

the proposed strategy adopts a model-free DRL algorithm

to the continuous decision-making problem. The case study

results show that the well-trained agent can determine a proper

capacity offer to maximize the total cumulative revenue while

satisfying the performance requirement from the market and

the comfort requirement from buildings.
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