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Abstract—District cooling system (DCS), a type of large-
capacity air conditioning system that supplies cooling for multiple
buildings, is an ideal resource to provide frequency regulation
services for power systems. In order to provide high-quality
services and maximize DCS’s revenue from the electricity market,
an accurate estimation of DCS’s regulation capacity is indis-
pensable. Inaccurate regulation capacity estimation may lead to
unsatisfactory cooling supply for buildings and/or poor regulation
service quality that may be penalized by the market. However,
estimating a DCS’s regulation capacity is quite challenging,
because a DCS usually has complex thermal dynamics to model
and its cooling demands and regulation signals are usually
highly stochastic. To address the above challenges, this paper
proposes a DCS regulation capacity offering strategy based on
deep reinforcement learning. It is model-free and can effectively
tackle various uncertainties. Furthermore, considering that the
training process of DRL needs lots of “trial and errors,” which
may harm the actual physical system by making “bad” decisions.
We propose a novel intrinsic-motivated method based on pseudo-
count to improve the efficiency of the training. Numerical studies
based on a realistic DCS system illustrate the effectiveness of the
proposed method.

Index Terms—Demand response, capacity offering, district
cooling system, reinforcement learning, intrinsic-motivation.

I. INTRODUCTION

Carbon neutrality facilitates the energy reform in the power
system, which is leading to a higher penetration of renewable
energies (RENs) in the future (e.g., over 80% in China by
2060) [1]. The intermittent and fluctuated power supply from
RNEs requires more regulation capacity for maintaining power
balance between supply and demand sides [2]. District cooling
system (DCS) is a type of large-scale and high-efficient air
conditioning system that provides cooling services for multiple
buildings, which is being widely adopted worldwide [3].
Because a DCS with multiple buildings usually has large-
capacity thermal inertia, it can modulate its power temporally
with negligible impacts on buildings’ indoor temperatures [4].
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Therefore, DCS is an ideal demand-side resource to provide
frequency regulation capacity for power systems.

In most power regulation markets, the resources (e.g., DCS)
are required to offer their regulation capacities to the market
ahead-of-time; and then commit their promised regulation
services following the system operator’s instructions during
real time operation. If a resource’s commitment is not satis-
factory, i.e., fails to provide the services as promised, it will be
penalized [5]. Therefore, to avoid the punishment caused by
poor regulation performance and receive maximum revenue,
a DCS must be able to evaluate and offer its future available
regulation capacity properly. However, this is quite challenging
because of the following aspects:

1) Complexity: A DCS is a networked system that serves
cooling for multiple buildings within a radius up to 2 km
[6]. As a result, its thermal dynamics are too complex to
model in a real-world system, because accurate system
parameters are influenced by external environment fac-
tors and impractical to measure. Thus, traditional model-
based methods for calculating regulation capacity are
probably infeasible for DCS.

2) Time-coupling: Because that a building’s thermal inertia
is limited, its regulation capacity is time-coupling and
may get saturated (similar to a battery storage system)
[7]. Specifically, a building may get overly heated or
cooled in one hour because of providing regulation
services, so that it may not be able to provide services
continuously for the following hours. Thus, this is a
sequential decision-making problem that requires the
proposed strategy to consider both the current and future
rewards so as to maximize the cumulative revenue.

3) Uncertainty: On the one hand, random human behaviors
make buildings’ cooling demands uncertain; on the other
hand, real-time regulation signals are highly stochastic
and unpredictable, which can affect DCS’s capacity of-
fering strategy. However, the prior knowledge of uncer-
tainty distribution is unknown and hard to be expressed
by explicit formulations. Hence, to ensure the regulation
performance and building temperature comfort at the
same time, these uncertainties shall be properly handled,
which further complicates the problem.

At present, most literature focus on the operation or con-
trol of DCS to minimize the expected energy cost [8]. For
example, Sam et al. [9] propose a control strategy to max-
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imize cost saving of DCS under the time-of-use electricity
prices. Mohammad et al. [10] design a least-annualized-cost
mathematical approach to determine the optimal control of
the DCS’s water flow for meeting required cooling demands.
These papers commonly focus on demand-driven operation
strategies, which only passively control DCS to satisfy cooling
demands while cannot effectively utilize DCS’s flexibility [11].
To the best of our knowledge, the regulation capacity offering
problem of DCS has not yet been studied previously.

Similarly with the DCS, household air conditioners (ACs)
have been a research hotspot to provide regulation services
for years [12]. Many researchers have studied their strategic
regulation capacity offering problem [13]. For example, Xie
et al. [14] develops a probability density estimation method
to offer the operating reserve capacity for large-scale aggre-
gated ACs. Li et al. [15] formulate the regulation capacity
assessment problem as quadratic programming to improve
flexibility and minimize the cost. However, the above two
methods rely heavily on accurate system models and steady
model parameters, which may not work for the complex DCS
in our problem [16]. Cai et al. [17] evaluate the maximum
regulation capacity of heating, ventilation and air conditioning
(HVAC) systems using a pseudo-optimization method, while
the uncertainties from cooling demands and market signals
are not taken into account. Besides, the traditional optimiza-
tion technique requires the system model with detailed and
accurate parameters, which may be infeasible to be applied
in a real-world DCS. Anwar et al. [18] present an extensive
multi-perspective method to assess the capacity of aggregated
residential HVACs as regulation reserves, while the regulation
performance is not considered. Compared with household
ACs, a networked DCS’s energy station and end-users are
located far away, which involves transportation in outdoor
pipelines and results in huge thermal inertia and transportation
time delay in DCS [9]. Besides, a DCS’s model parameters
are influenced significantly by environmental changes, such as
ambient temperature and humidity [19]. Furthermore, a DCS’s
operating power can only be regulated indirectly through
controlling water mass flow or supply water temperature,
where the relationship is nonlinear and hard to model [11].
Thus, most model-based methods used in household ACs [20]–
[22] are not applicable for the DCS capacity offering problem.

Recently, deep reinforcement learning (DRL) has been paid
more attention as a model-free method and has successfully
addressed many decision-making problems in power systems
[23]. For example, Chen et al. [24] use the DRL method
to seek the optimal demand response strategy, which can
adapt to the changing environment information automatically.
Liang et al. [25] propose an HVAC control algorithm in
commercial buildings based on DRL to cope with the unknown
thermal dynamic models and parameter uncertainties. To the
best of our knowledge, there is no published paper that
has adopted DRL in DCS for frequency regulation capacity
offering problems, which is the focus of this paper. Although
DRL does not require model knowledge of DCS, successfully
applying it to our problem is nontrivial. First, the complex
capacity offering problem is required to be formulated into
a Markov decision process (MDP) mathematically, based on

the operating characteristic of DCS. Second, the model-free
algorithm is required to improve the low training efficiency
caused by the absence of model knowledge, where the agent
updates the policy through random explorations [26]. Last,
because of poor policy and aggressive exploration at the early
learning stage, the agent in traditional online DRL methods
needs lots of “trial and errors” resulting in “bad” decisions
[27].1 A “bad” decision may lead to uncomfortable indoor
temperatures in buildings and low regulation performance.
In summary, when adopting DRL method in a DCS system,
we need to formulate the problem in MDP mathematically,
improve the training efficiency, and decrease the times of bad
decisions.

To address the above issues, an intrinsic-motivated DRL
method is proposed in this paper for a large DCS to determine
its hour-ahead regulation capacity. The main contributions can
be summarized as follows:

1) A model-free DRL-based capacity offering strategy is
developed for DCS to provide regulation services, whose
objective is to maximize revenue while considering both
the buildings’ temperature comfort and DCS’s regulation
performance. It can effectively address the challenges
brought by the model’s complexity, time-coupling and
uncertainties.

2) A novel intrinsic-motivated method is proposed to im-
prove the RL exploration efficiency. Compared with
the traditional RL method, our method can converge
to a similar result through fewer training episodes and
enhance the convergence performance. Thus, the times
of operation constraint violations during training can be
effectively decreased.

This paper is organized as follows. Section II develops the
preliminary model of a DCS. Section III formulates the se-
quence decision-making problem as an MDP and proposes the
intrinsic-motivated DRL method to solve the control strategy.
Section IV illustrates the effectiveness of the proposed method
by numerical studies. Finally, Section V concludes this paper.

II. PRELIMINARY MODELS

In this section, we first provide the DCS thermal dynamic
model that considers the thermal inertia, ramp rate and tem-
perature transmission time delay of mass flows. Second, we
introduce the PJM’s regulation market rules to calculate hourly
performance score and revenue [5],2 which further formulates
the corresponding regulation capacity offering problem. It
should be noted that the DCS model is established as a
simulation environment for interacting with the DRL agent.
While the agent does not know any knowledge about the
system model, and its training process is still model-free.

1An RL model can be trained either offline based on historical data or
online by interacting with the environment [28]. In this paper, considering
that it is hard to collect adequate historical data to cover all the scenarios,
especially those extreme scenarios that offer a too large or too small capacity
to the market. Therefore, we adopt the online RL algorithm to train our model
by interacting with the environment.

2The proposed method is also adaptable to other regulation markets.
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Fig. 1: Schematic diagram of a DCS.

A. Modelling of the DCS

1) Thermal dynamic process: The schematic diagram of
a DCS is shown in Fig. 1, where the DCS is composed
of one energy station, multiple pipelines and buildings. The
blue and red lines represent the chilled and warm water,
respectively. Chillers in the energy station, as the system’s
main power consumer, produce chilled supply water. The
chilled supply water is pumped into pipelines to exchange heat
with buildings and becomes warm return water. The following
thermal dynamic model describes the thermal transmission
from chillers to buildings.

According to the energy balance, the chillers’ cooling power
can be calculated as follows:

P ch
t =

Qch
t

COP
, ∀t, (1)

Qch
t = cwmch

t (T
ch,r
t − T ch,s

t ), ∀t, (2)

mch
t =

∑
i∈I

mI
i,t, ∀t, (3)

where P ch
t and Qch

t are chillers’ electricity power and cooling
power at time t, respectively, in kW. The parameter COP is the
coefficient of performance, and cw is the specific heat capacity
of water, in kJ/(kg·◦C). The total mass flow rate in pipelines,
mch

t (in kg/s), is the sum of buildings’ mass flow rates, mI
i,t

(in kg/s), where set I denotes the set of all buildings. It
can be seen from Eq. (2) that the difference between the
supply and return water temperatures T ch,r

t −T ch,s
t (in ◦C) can

reflect the actual cooling demands and influence the cooling
power. Further, the return water temperature T ch,r

t in pipelines
is determined by the warm return water from buildings, which
can be calculated as follows:

cwmch
t T

ch,r
t =

∑
i∈I

cwmI
i,tT

I,r
i,t, ∀t, (4)

where T I,r
i,t is the i-th building’s return water temperature.

In the heat exchanger, the water in pipelines and buildings
are isolated. The water in the two cycles only exchanges heat
to achieve thermal transmission. The total exchanging heat
Qi,t (in kW) can be calculated as follows:

Qi,t = cwmI
i,t(T

I,r
i,t − T I,s

i,t) · η
I
i

= cwmII
i,t(T

II,r
i,t − T II,s

i,t ), ∀i ∈ I,∀t, (5)

where ηI
i is the heat transfer efficiency of the i-th building’s

heat exchanger. Symbols mII
i,t (in kg/s), T II,r

i,t and T II,s
i,t are

parameters of the ith building’s water cycle, which indicate
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Fig. 2: Water transportation in a pipe.

the water mass flow rate, return water temperature and supply
water temperature, respectively.

In the building, the thermal energy brought by the build-
ing’s cooling water provides cooling services and maintains
its indoor temperature TA

i,t. The temperature dynamic is as
follows:

Di

∂TA
i,t

∂t
=

TO
t − TA

i,t

Ri
+ ζi,t − ηII

i Qi,t, ∀i ∈ I,∀t, (6)

where Di and Ri are the i-th building’s thermal capacity and
thermal resistance, in kJ/◦C and ◦C/kW, respectively. Symbol
TO
t (in ◦C) is the ambient temperature and ηII

i is the heat
transfer efficiency. The uncertain heat loads (because of human
activities) in buildings are denoted by ζi,t (in kW).

2) Control process: As shown in Fig. 1, control valves in
each building can regulate the water mass flow mI

i,t to adjust
the cooling supply for buildings. However, the control process
is not instantaneous, which exists the ramp rate, inertia and
time delay. We assume that the aim value of the mass flow’s
regulation is represented by ∆maim

i,t at time t, then the ramp
rate limitation ∆mramp

i can be expressed as follows:

∆maim
i,t ≤ ∆mramp

i , ∀i ∈ I,∀t. (7)

For the inertia process, after a period of time t1, the mass flow
changes to a new value as follows:

mI
i,t+t1 = mI

i,t + (1− e
−t1
Gi )∆maim

i,t , ∀i ∈ I,∀t, (8)

where Gi is the i-th building’s inertia time constant.
The change of the mass flow influences the building’s return

water temperature, which further changes the cooling power.
However, the temperature change exists time delay. As shown
in Fig. 2, in a pipe with length L, its inlet water is from the
building with temperature T I,r

i,t, and its outlet water goes to the
chillers with temperature T ch,r

t . At each time step t, the water
velocity vt in the pipe equals to:

vt =
∑

i∈I
mI

i,t/Aρw, ∀t, (9)

where A is the pipe’s sectional area and ρw is the density of
the water. Symbol τt represents the time delay index, which
can be calculated as follows:

τt = min τt, s.t.
∑τt

j=0
vt−j∆t ≥ L, (10)

where ∆t is the interval between two adjacent time slots. The
outlet water at time t is composed by the water with different
temperatures, as the green area in Fig. 2. The average mixing
temperature of the water can be calculated as follows:

vtT
ch,r
i,t = (

∑τt

j=0
vt−j −

L

∆t
)T I,r

i,t−τt
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+ (
L

∆t
−
∑τt−1−1

j=0
vt−1−j)T

I,r
i,t−1−τt−1

+
∑τt−1−1

j=τt
vt−jT

I,r
i,t−j , ∀i ∈ I,∀t. (11)

B. Regulation Capacity Offering in PJM
The market rule for resources to provide frequency reg-

ulation services is shown in Fig. 3. In PJM, the day-ahead
regulation market closes at 14:15 the day before the operating
day. However, in order to accurately reflect the resource’s
available capacity during the operating day, the regulation
capacity offering is allowed to be changed and resubmitted
until 60 minutes prior to the operating hour, at which time
the hour-ahead market closes [29]. The market determines all
resources’ capacities one time slot before the operating time
[t, t+1] [5]. When DCS finishes providing services at time
t+1, it can receive its hourly revenue rDCS

t as follows:

rDCS
t = CDCS

t sDCS
t pPJM

t , ∀t, (12)

where CDCS
t (in MW) and sDCS

t ∈ [0, 1] are DCS’s hourly regu-
lation capacity and performance score, respectively. Parameter
pPJM
t is the market clearing price, which is uncertain and

determined by all market participators. The DCS is assumed
as a market price-taker because its regulation capacity is not
large enough to influence the market price.

The performance score sDCS
t reflects the resource’s reg-

ulation quality, which assesses the difference between the
actual regulation and the received signal from three aspects:
1) precision; 2) correlation; and 3) time delay, as follows:

sDCS
t = (spre

t + scor
t + sdelay

t )/3, ∀t, (13)

where spre
t , scor

t and sdelay
t ∈ [0, 1] are the corresponding scores

of precision, correlation and time, respectively. Because of
space limitations, we cannot introduce this score in detail. The
score calculation rules can refer to the PJM manual [29].

For a DCS, in order to maximize the revenue rDCS
t , it should

strategically offer its regulation capacity and maintain a high-
enough performance score. However, if a DCS offers a too
large regulation capacity while cannot commit, it may receive
a low-performance score and be kicked out of the market. In
PJM, there are two score requirements for the participants,
which are the disqualification threshold score 0.4 and the test
qualification score 0.75 [30].3 To let the agent’s strategy meet

3The participant must satisfy the test qualification score before it is
permitted to enter into the regulation market. During daily operation, if the
participant violates the disqualification threshold score, it will be kicked out of
the regulation market. Training two different controllers for the two different
stages will be considered as our future research direction.

both two score requirements, we adopt the higher one as the
agent’s performance criterion s=0.75.4 This is because we
should ensure that the trained agent can work well both in
the qualification test stage before entering the market and the
daily operation stage after entering the market. Considering
that a DCS’s regulation capacity is time coupled, the objective
of DCS is to maximize its cumulative revenue during a day
as follows:

max
CDCS

t

rDCS =
∑

t
CDCS

t sDCS
t pPJM

t , (14)

s.t.: sDCS
t ≥ s, |TA

i,t − T set
i,t | ≤ ∆Ti, ∀i ∈ I,∀t, (15)

where T set
i,t and ∆Ti are the building’s set temperature and

its required comfortable range, respectively. Eq. (14) shows
the objective of the cumulative revenue. In our objective,
the additional power cost and valve life influence caused by
regulation services do not be taken into account, because we
assume that they are insignificant compared with the regulation
revenue from markets. Eq. (15) shows two constraints when
DCS provides the regulation capacity to the market, which are
the performance score requirement from the market and the
temperature comfort requirement from buildings.

Remark 1. The capacity offering is expected to be large
to increase the revenue according to Eq.(12). However, the
requirements from the performance score and buildings’ in-
door temperature comforts limit the offered regulation capac-
ity. Considering the model complexity and the environment
uncertainty, it is infeasible to adopt traditional model-based
methods. Meanwhile, the offer strategy should consider the
time-coupled decision, which presents another challenge to
our problem. To address these challenges, a model-free DRL
method is proposed in Section III.

III. REGULATION CAPACITY OFFERING BASED ON DRL

This section proposes an intrinsic-motivated DRL frame-
work to determine the regulation capacity offering strategy.
First, the decision-making problem is formulated as an MDP
mathematically, whose objective is to maximize DCS’s ac-
cumulative revenue with qualified services. In the proposed
framework, both the uncertainties of real-time prices and
regulation signals are considered. Then, considering that the
DCS’s model is usually unavailable, the strategical policy of
the MDP is solved by a model-free method based on the
policy gradient. Furthermore, intrinsic motivation is designed
to improve training efficiency, which can decrease the times
of score violations during the training process.

A. Regulation Capacity Offering based on MDP

In order to use a model-free algorithm, we first need to
design a proper MDP to describe the DCS capacity offering
problem in a mathematical way. A well-designed MDP re-
quires a state space that captures necessary system information
and guarantees Markov property. Besides, the reward function

4The effectiveness of the proposed method does not rely on the given
constrained performance criterion. Our method can be readily extended to
consider other criteria based on the different market rules.
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is required to achieve the trade-off between the revenue reward
and constraint violation penalties. In our problem, the observed
state variables mainly consist of the DCS operating state (e.g.,
power consumption and indoor temperature) and historical
market information (e.g., prices and signals). At each time
step, the state can be fully observed because the historical
market information is already known and the DCS operating
state can be measured. Besides, the next state only depends
on the current state and uncertain future environment, so the
state space satisfies the Markov property. Meanwhile, the state
transition can be considered as a memory-less stochastic pro-
cess, where the next state is influenced by uncertainties from
both the real-time market and cooling demands. Therefore, our
problem is qualified to be modeled as an MDP.

The regulation capacity offering problem can be described
as an MDP with a 5-tuple ⟨S,A,P,R, γ⟩. Symbol S is a
state space; A is an action space; P is a transition probability
function; R is a reward function; γ ∈ [0, 1] is a discount factor
to balance the immediate and future rewards. Considering that
the accurate DCS model can not be obtained, the transition
probability function is not necessary to be defined in the pro-
posed model-free method. The other elements are introduced
in detail as follows:

1) Action: The decision variable at each time step t is the
agent’s action, which is defined as the DCS’s hourly capacity
offering to the electricity market, at = [CDCS

t ]⊺, ∀t. The action
is a continuous variable that satisfies at ∈ [Cmin, Cmax], where
Cmin and Cmax represents the DCS’s minimum and maximum
regulation capacity, respectively. Because the market signal σs

t

is a value between [−1, 1], the power regulation range of DCS
during services is within [−at,at]. In other words, the power
shall be able to be regulated both up and down according to
the signals. If the signal is negative, the power is regulated
down; otherwise, it is regulated up.

2) State: State space is the observation of the DCS’s real-
time operation, which is also the input of the agent. Here, the
observed state space at each time step t is defined as follows:

st = [t, pPJM
t−1, P

ch
t−1,E[∆Ti,t−1],E[σs

t−1], f(σ
s
t−1)]

⊺, ∀t,

where the scale of the state space is |S| = 6. Note that the
key idea for the state design is to select those state variables
that have strong relevance to the decision-making. Because
the state that includes too much irrelevant information may
take counterproductive effect on the convergence of DRL
[31]. Hence, the designed MDP does not include all the
DCS state information, and the lost information is assumed
as the environment uncertainty to simplify the problem [32].5

The observed parameter t is the operating time that reflects
the ambient temperature and cooling demands; pPJM

t−1 is the
last hour’s market prices. Parameter P ch

t−1 is DCS’s power
consumption to indicate the maximum regulation capacity,
where a higher power means a larger capacity. Symbol
∆Ti,t−1 is the building’s temperature deviation from its set
value, i.e., ∆Ti,t−1 = TA

i,t−1 − T set
i,t−1. The expectation of

all the buildings’ deviations E[∆Ti,t−1] reflects buildings’

5This simplification still satisfies the Markov property, because the next
DCS operating state has no direct relationship with the historical state.

t-1

1

-1

Decrease the power

Increase the power

Fig. 4: The accumulated regulation brought by signals.

temperature comfort and regulation thermal potential for the
next time step. The parameters E[σs

t−1] and function f(σs
t−1)

describe the statistical characteristics of the market signal
σs
t−1, which can help the agent predict the signal trend.

The former parameter E[σs
t−1] is the expectation of regulation

signals, which denote the average regulation degree. The later
f(σs

t−1) is a self-defined function to represent the maximum
cumulative regulation power brought by regulation signals
during the operating hour, whose definition is as follows:

f(σs
t−1) = max

x∈[t−1,t]
|
∫ x

t−1

σs
xdx| · CDCS

t , ∀t. (16)

Specifically, as shown in Fig. 4, the DCS’s power is regulated
up when the signal is positive and down when it is negative.
When the signal keeps in the same regulation direction in [t−
1, t1], the cumulative regulation power keep increasing with
time, as the shadow area shows. When the signal changes its
direction at time t1, the regulation power also changes the
direction so that the cumulative regulation decreases.

3) Reward: The reward function is designed to achieve the
maximum revenue from the electricity market. Considering
the constraint of the performance score, we use symbol κt to
indicate the satisfaction of the score requirement (i.e., when
sDCS
t ≥ s, κt = 1; otherwise, κt = 0). Then, the reward is

composed of two parts as follows:

Rt = β1κtC
DCS
t sDCS

t pM
t − β2(1− κt)

CDCS
t

sDCS
t

, ∀t, (17)

κt =

(
1 +

sDCS
t − s

|sDCS
t − s|

)
/2, ∀t. (18)

In Eq. (17), the former part is the obtained revenue and the
later part is the penalty for score violations. It means the
reward is negative for punishing the agent’s decision, when the
performance score is lower than the required value. Parameters
β1 and β2 are weight factors of the corresponding items.

B. Regulation Capacity Offering based on Deep Deterministic
Policy Gradient

In this subsection, we introduce the deep deterministic pol-
icy gradient (DDPG) algorithm, an effectively RL algorithm,
to solve the proposed MDP. In the proposed MDP, the mapping
rule from the state space to the action space is defined as a
policy: π : S → A. A deep neural network with parameter
θπ is adopted to express the policy π, called actor network.
The agent’s objective is to seek the optimal parameter θπ∗

(i.e., π∗ is the optimal policy) that can maximize the expected
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long-term reward J(π), as follows:

max
π

J(π) = E
τ∼π

[∑T

t=0
γtRt

]
, (19)

where τ={s0,a0, s1, ...,aT−1, sT } is the sequence of con-
tinuous states and actions; Rt is the immediate reward for
a single time step t. This objective guides the trained agent
to select an action that can maximize the long-term revenue,
instead of maximizing the current hour’s revenue.

In order to update the policy and converge to the optimal
one θπ → θπ

∗
, an action-value function is defined to critique

the probability distribution of the next state as follows:

Qπ(s,a) = E
τ∼π

[∑T

t=0
γtRt|s0 = s,a0 = a

]
, (20)

where Q value denotes the expected reward taking action
a at state s following the policy π. Note that at the same
state s, a larger Q value means a better action a. Here,
because of the absence of the model knowledge, function
Q is approximated by a neural network with parameter θQ,
called critic network. After training, the critic network can
achieve the estimation of the state probability distribution,
which addresses the uncertainties.

With the interaction between the agent and the environment,
the transitions (st,at,Rt, st+1) are stored into an experience
reply buffer as the training data. After each episode, the agent
randomly samples L training data from the reply buffer to
update its policy parameter θ in the policy gradient direction
[33], as follows:

θ ← θ + λ▽θ J
π, (21)

▽θ J
π =

1

L

L∑
l=1

▽aQ(sl, π(sl))▽θ π(sl), (22)

where λ is the learning rate, ▽θJ
π is the gradient of the

agent’s expected reward with respect to parameters θ. The key
idea of the gradient equation (22) is to increase the action’s
possibility that can gain a higher reward.

In Eq. (22), in order to calculate the gradient of Q function
(i.e., critic network) and policy π (i.e., actor-network), their
corresponding loss functions are required [33], as follows:

L(θQ) =
1

L

∑L

l=1
[Rl +Q′(sl+1, π

′(sl+1))−Q(sl,al)]
2,

(23)

L(θπ) = − 1

L

∑L

l=1
Q(sl,al), (24)

where Q′ and π′ are the target networks that are the copies of
networks Q and π, respectively. The loss function of critic
network Q adopts the mean squared error to approximate
its target value, which considers the next step’s Q value
by Rl + Q′(sl+1, π

′(sl+1)). The target value is designed
according to the temporal-difference learning method, which
dynamically approximates the Q value using the next step’s Q
[34]. In this way, the next action’s Q value can be propagated
to the current action to consider all the future steps. The loss
function of actor-network π adopts −Q value. Based on the
Eqs. (21)-(24), the actor and critic networks can be updated
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Fig. 5: Framework of the proposed strategy.

to improve the probability of high-reward actions at each time
step. Further, the environment uncertainty can be addressed
without any knowledge of the DCS model [35].

Remark 2. The hourly capacity offering problem is formu-
lated as an MDP and solved by DDPG to seek an effective
strategy. According to the real-time operating state of DCS,
the well-trained agent can make continuous decisions auto-
matically, which adapt to the uncertain market signals and
stochastic cooling demands.

C. Count-based Exploration and Intrinsic Motivation

As shown in Fig. 5, the well-trained agent is applied
online to offer regulation capacity, which further collects the
experience data for the offline training process. In the capacity
offering process: According to the DCS’s current state, the
agent’s policy determines the capacity offering action before
the market closes and sends it to the DCS. Then the DCS
executes the decision following market signals during the
operating hour. After the operating hour, the DCS receives the
revenue from the market and observes its updated operating
state. Finally, the DCS sends the revenue and new state to
the agent for the next decision. In the training process: To
update the agent’s policy, the agent uses all the historical
experiences (st, at, Rt.st+1) generated by the interactions
with the environment. Considering that the designed MDP
does not have a system model to know the deterministic
state transition, the model-free algorithm’s training efficiency
will become relatively low compared with a model-based one.
Meanwhile, the agent’s exploration during the training process
based on lots of “trial and errors” in the traditional DRL
framework may lead to many “bad” decisions. As a result,
the DCS may often violate the constraints in Eq. (15) and
receive a low regulation performance score.

To address this issue, we propose the intrinsic motivation
method over the environment’s reward to improve the training
efficiency and ensure a “safer” training process. The key idea
of the intrinsic motivation method is to add an exploration
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bonus in the reward function to encourage the exploration of
new states. The bonus is designed based on the state visit
count N(s) that describes the total historically visited times of
states, where a larger visit count means a smaller information
gain for the agent [36]. According to the state visit count,
the agent tends to exploit historical experiences in its familiar
states with large N(s), and explore more unknown states with
small N(s) [37]. As a result, the agent will explore the state
space with fewer episodes, which can significantly accelerate
the training process and reduce the number of “bad decisions.”

However, in our problem, the state space is continuous,
which causes the empirical-count number N(s) to be invalid
because the same state is rarely revisited. To overcome this
challenge, we propose the pseudo-count number N̂(s) to
approximate the empirical-count number, which is derived by
a density model of experienced states introduced as follows.

1) Pseudo-count number: To derive the calculation for-
mulation of pseudo-count, we first give the definition of the
probability and re-coding probability. For the state space S,
s1:n represents a sequence states (s1, ..., sn) ∈ Sn with length
n. If a state’s number st in the sequence s1:n is Nn(st), then
for each s1:n, the probability distribution over S is given as:

ρn(st) = ρ(st|s1:n) =
Nn(st)

n
, ∀t, (25)

where Nn(st) is the empirical-count number in all the past
n experiences. Distribution ρn(st) is a density model that
assumes all states are distributed independently. Inspired from
the statistical compression, when the density model ρn(st)
observes a new state st, the probability of state st is called
re-coding probability, formulated as follows:

ρ′n(st) = Prρ(Sn+2 = st|S1...Sn = s1:n, Sn+1 = st)

= ρ(st|s1:nst), ∀t, (26)

where ρ′n(st) is a conditional probability distribution; s1:nst
means the connection of n samples s1:n and a state st. Then,
the relationship between the state st’s pseudo-count number
N̂n(st) and the pseudo-count total number (of all states) n̂ is
formulated as the following two constraints:

ρn(st) =
N̂n(st)

n̂
, ρ′n(st) =

N̂n(st) + 1

n̂+ 1
, ∀t. (27)

It means after observing one sample of state st, the prediction
probability of the same state st in the density model would
increase correspondingly. Therefore, the pseudo-count number
can be solved by the linear equation as:

N̂n(st) =
ρn(st)(1− ρ′n(st))

ρ′n(st)− ρn(st)
, ∀t. (28)

Based on the above equation, the pseudo-count number N̂
can be derived through the density model ρn(st), which can
approximate the empirical-count number N effectively in a
continuous space.

2) Density model: For estimating the density ρn(st) based
on historical samples s1:n, we use the Gaussian Mixture
Model (GMM) as the density estimation model [38], which
is a probabilistic model that is composed of K Gaussian

distributions as follows:

µ(st) =
∑K

k=1
ckN (st|µk,Σk), ∀t, (29)

where each Gaussian density N (st|µk,Σk) has its own mean
µk and co-variance Σk. Parameters ck are the weight factors.
The parameters µk, Σk of GMM are estimated by the Expec-
tation Maximization algorithm [39]. Then, we normalize the
state densities between zero and one (i.e., 0≤ ρ ≤1) as:

ρn(st) =
µ(st)∑n
j=1 µ(sj)

, ∀t. (30)

Similarly, the re-coding probability ρ′n(st) can be calculated
by the above two equations based on state samples s1:nst.
After that, taking ρn(st) and ρ′n(st) into Eq. (28), the pseudo-
count number N̂n(st) can be calculated.

3) Exploration bonus as intrinsic motivation: After calcu-
lating the state’s pseudo-count number N̂n(st), the agent adds
an exploration bonus as the intrinsic motivation to its empirical
reward function Rt. The bonus form is as follows:

R+
t(st,at) = Rt + β3(N̂n(st) + 0.01)−1/2, ∀t, (31)

where β3 is the mixing coefficient. The new reward R+
t

replaces the traditional reward function Rt to calculate the
gradient in Eq. (22), and updates the policy neural network
π. Note that a smaller pseudo-count N̂ in Eq. (31) leads to a
larger step reward to encourage the agent’s exploration.

Remark 3. The proposed method uses the state’s pseudo-
count number to approximate the empirical count, which
is then used to incentivize the agent to explore unknown
states. This method can decrease the total times of constraint
violations by improving training efficiency, so that it is “safer”
compared with the traditional RL.

IV. CASE STUDY

A. System environment

Based on the system schematic diagram of the realistic DCS
in Hengqin, China, our simulation environment is established
for both the training and testing process.6 The aim of the
simulation environment is to validate the effectiveness of our
proposed method. It means, if we can deploy the agent in
a real-world system, the agent can be trained directly in the
real-world system. All the case studies are implemented in the
simulated DCS that is composed of one energy station and
12 connected buildings. The total cooling capacity of DCS
is 144 MW. The system parameters are illustrated in Table
I, which are designed according to both the DCS technical
guidelines [40] and Chinese National Standards (GB 31349-
2014, GB 50019-2003, DBJ 15-51-2020 and NB/T 47004.1-
2017). The market regulation instruction (σs

t) and hourly price
(pPJM

t ) are collected from the realistic data in PJM [5] (one
typical day is shown in Fig. 6). Meanwhile, the designed
performance criterion (s) for our agent is 0.75, which is
the test qualification score in PJM. -The minimum capacity

6The DRL agent is trained and tested in the same environment, which is the
characteristic of online DRL and there are lots of environmental randomnesses
that need to be handled by the agent.
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TABLE I: Parameter setting of DCS.

Symbols Definitions Values
COP Coefficient of performance 5
ηI
i, η

II
i Heat transfer efficiency 90%

cw Heat capacity 4.2 kJ/(kg·◦C)
Di Buildings’ thermal capacity 106 ∼ 107 kJ/◦C
Ri Buildings’ thermal resistance 0.001∼0.003 ◦C/kW
T set
i,t Indoor set temperature 20∼23◦C

∆Ti,t Comfortable temperature range -1∼1◦C
T ch,s
t Supply water temperature 3 ◦C

Cmin Minimum regulation capacity 0 MW
Cmax Maximum regulation capacity 144 MW
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Fig. 6: RegA signal and hourly price in PJM.

requirement to access the market is set as 1MW, which means
the DCS can participate in the regulation market only when
its capacity offer is larger than 1MW.

B. Benchmarks

We implement three benchmarks to validate the benefits
of the proposed method: 1) the proposed count-based DDPG
strategy that uses the proposed reward function in Eq. (31) is
denoted by B1; 2) the DDPG strategy that uses the original
reward function in Eq. (17) is denoted by B2; 3) the heuristic
method based on particle swarm optimization (PSO) is denoted
by B3; and 4) the equal-proportional strategy is denoted by
B4. The capacity offering in the benchmark B4 is directly
proportional to the DCS’s operating power. Thus, the B4
strategy participates in the regulation market every hour as
long as its capacity offering satisfies the required value.
Considering the actual operating power is unknown when
determining the regulation capacity, we adopt DCS’s average
power of the same hour in the past five days as its base power.
According to the base power P base

t and a constant proportion
g%, the DCS calculates its hour-ahead capacity offering by:

CDCS
t = P base

t · g%, ∀t. (32)

To show the results based on different proportions, we set g%
as 10%, 20% and 30%, and name the corresponding scenarios
by B4-10%, B4-20% and B4-30%, respectively.

For the DRL methods B1 and B2, all parameter settings
are the same except that B1 adopts the intrinsic motivation in
Eq. (31). The weight factors are set as β1=0.005, β2=0.003

and β3=0.05 7. The discount factor is set as γ=0.9. The
number of mini-batch samples is set as L=200. The actor and
critic networks both have two hidden layers with a scale of
128×128, whose learning rates are set as 0.001 and 0.0001,
respectively. The smooth factors of the two target networks are
all set as 0.005. The noise added to the action at each time
step subjects to Gaussian distribution ξ ∼ N(0, σ2), where σ
is set as 0.3. The simulation is implemented in a Windows
system, using the PyTorch framework in Python with an Intel
core i7 CPU @3.0 GHz and 16GB memory.

C. Training Efficiency of RL Methods

Fig. 7 depicts the results of training episode rewards based
on methods B1 and B2. In order to compare the same reward
of the two methods, the reward curve of method B1 in Fig. 7
does not include the added exploration bonus item in Eq. (31).
Two agents in B1 and B2 are initialized with the same random
policy, then their policies are trained through interactions with
the same environment for 7500 episodes. In the early training
stage, two agents’ policies are not good and unstable due to the
absence of prior knowledge. After nearly 2000 episodes, the
quality of the two policies are improved and become stable.
The episode rewards of B1 are higher than those of B2 during
the training process. Moreover, the final converged reward of
B1 is also significantly higher than that of B2. It is noted that
the converged policy in the two DRL algorithms are probably
not the global optimums, but they are both acceptable sub-
optimal solutions for our complex capacity offering problem.
The optimality of the DRL policy for a specific work is
difficult to prove mathematically [42].

Fig. 8 shows the violation penalties during the training
process based on methods B1 and B2. If the performance
score satisfies the requirement, the penalty is zero; otherwise,
it will be negative. It can be seen that the agent in method
B2 frequently violates the score constraint until it converges.
However, the proposed method B1 can avoid significantly
violating the score constraint after about 150 episodes. It is
noted that, in Figs. 7 and 8, the effectiveness of the strategy
at the beginning cannot be guaranteed, where the strategy’s
reward is quite low and the score violation is significant. This
is a common limitation of online DRL when it is applied in a
practical system. To avoid the unstable policy at the beginning,
many researchers adopt a high-quality pre-trained policy to
initialize the agent, such as combining transfer learning with
DRL [43]. This is out of this paper’s scope and will be an
important future work.

D. Regulation Revenue and Performance Score

To validate the superiority of the proposed method B1, two
months’ regulation capacity offerings are simulated adopting
all the benchmarks. For the model-free methods B1 and B2,

7Weight factors β1, β2 and β3 are determined one by one through the
following steps: Firstly, we adjust the reward scale and find a proper order
of magnitude for β1 through testing, to ensure that each step’s reward lies
near to 1 [41]; Secondly, based on the fixed β1, we tune β2 to penalize the
score violations until the agent achieves the balance between the reward and
penalty; Finally, we select β3 from a coarse parameter sweep.
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the well-trained agents (after convergence) are adopted in the
simulation. The distributions of all the daily revenues and
regulation score violations in the test days based on different
strategies are shown in Figs. 9(a) and 9(b), respectively. The
profiles of hourly regulation scores in a typical operation day
is shown in Fig. 10. If the hourly performance score satisfies
the market requirement, it falls above the dotted line.
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Fig. 9: The distributions of (a) the daily revenue, and (b) the
daily score violation hours.
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capacity offering strategies.

For the three equal-proportion strategies, the score viola-
tions increase significantly with the regulation capacity offer-
ing. When the regulation capacity offering is too large, many
buildings may become uncomfortable and quit the regulation
services to recover their indoor temperatures during operation
hours, which will affect the regulation performance scores. In
B4-10%, the DCS’s hourly capacity offerings are too small.
Though it has high performance scores, it still cannot gain high
revenue. By contrast, in B4-30%, the DCS offers two large
regulation capacities that cause low-performance scores, which
also leads to a decrease in the total revenue. Because B4-
20% can better balance regulation capacity and performance
scores, it outperforms B4-10% and B4-30%. The heuristic
method B3 outperforms the three equal-proportional strategies
in terms of both regulation revenue and performance score.
However, it is worse than the two RL methods because it is
hard for PSO to find the global optimal solution. The two
RL-based methods (B1 and B2) significantly outperform the
other benchmarks. They have lower score violations and higher
regulation revenue. This is because the well-trained agents in
the two DRL methods can predict the signal, and determine
whether to participate in the market according to different
operating states. This strategy fully exploits the building’s
thermal inertia by providing intermittent services. The average
daily revenue of proposed method B1 is the highest among all
the benchmarks; its daily score violations are also the smallest.
The above results validate the superiority of the proposed
method B1 in the regulation capacity offering problem.

E. Building Temperatures and Operating Power of DCS

Fig. 11 gives all the buildings’ indoor temperature devia-
tions on a typical summer day, when DCS provides regulation
capacity based on the proposed method B1. The daily ambient
temperature fluctuates within 28∼32 ◦C. Meanwhile, build-
ings’ set temperatures distribute in 20∼23 ◦C, and buildings’
required comfortable temperature ranges are all set as ±1 ◦C,
as the two blue lines show. When the DCS does not partic-
ipate in the regulation market, buildings’ indoor temperature
deviations are generally small and close to zero. It can be seen
from Fig. 11 that the proposed method B1 can guarantee all
the buildings’ temperature comforts within the required range.
It is noted that the indoor temperature deviations in different
buildings are similar at night (i.e., 22:00∼8:00), while they are
diverse during the daytime. This is because uncertain people
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Fig. 12: The operating power of DCS based on strategy B1.

flows bring variational heat loads in the daytime, which causes
a significant impact on indoor temperatures.

Fig. 12 shows DCS’s operating power consumption during
the service. In each hour, if DCS participates in the market and
provides regulation capacity, there is a target power for DCS
to follow the real-time signals. By contrast, if DCS does not
provide regulation services, there is no target power for DCS
to follow and it will try to maintain the building’s set indoor
temperatures. It can be seen from Fig. 12 that after providing
the regulation service for a period, the proposed strategy B1
tends to wait for some time. As a result, the DCS participates
in the market for only 15 hours, and the longest continuous
time to provide regulation service is 4 hours. This is because
the buildings’ total thermal inertia is limited and it may get
fully utilized after a couple of hours’ continuous regulation.
Fig. 12 also shows that the DCS’s actual power can follow the
target power well. It proves that the DCS can provide high-
quality regulation services with high-performance scores.

From the above experiments, we can obtain several op-
erating insights for the DCS operation when it provides
regulation services to the market. First, DCS indeed possesses
the flexibility to participate in the market and it can provide
approximately 20% of its power as the capacity offering. Then,
to obtain more revenue, DCS tends not to provide regulation
services for a continuous long time. Finally, the capacity
offering in the night (i.e., 22:00-8:00) is more stable than that
in the daytime (i.e., 8:00-22:00), and it may probably be easier
to determine the night capacity.

F. Discussion on Additional Cost for Regulation Service

It is possible that controlling DCS to provide regulation
services may lead to additional costs, e.g., extra power con-
sumption and hardware degradation, which are not considered
in our objective Eq. (14). In this subsection, we conduct

primary additional analysis to show that these losses could
be negligible compared with the regulation revenue.

Based on the DCS operation data in one week, we compare
the power consumption results under two different modes in
Table II, i.e., the mode with regulation service and without
regulation service. It can be seen that, the maximum deviation
of the power consumption is around ±65 MWh. Compared
with the daily power consumption, the maximum deviation
proportion is only 4.30%, which is quite small. Furthermore,
considering the power consumption differences could be pos-
itive or negative values in different days, the average power
consumption difference during a week is only -13.2 MWh
(i.e., only 0.7% compared with the average daily power con-
sumption). The main reason is that the DCS operating power
always fluctuates around the original baseline power curve to
maintain the required comfortable indoor temperatures. Hence,
the additional power consumption cost is negligible.

In addition, the compressor is the most important component
in a DCS. When the DCS provides regulation services, both
the inbuilt regulation function and time interval of the com-
pressor are the same with the DCS’s original operating mode.
The only difference is the regulation target, which adds a new
power target to reflect the gap between the actual and promised
power. So the adjustment signals for the DCS compressor are
still sent within the same time interval, i.e., the regulation
times of the compressor do not change. Moreover, both the
system time delay and ramp rate are considered to limit
the frequent adjustment of DCS power. This can ensure that
the power is always adjusted within the designed acceptable
range. Therefore, we assume that providing regulation service
has a negligible impact on a DCS lifetime in this paper.
Nevertheless, the proposed method can be readily extended
to consider this additional operational cost if necessary, which
could be a future research direction.

V. CONCLUSION

This paper proposes an hour-ahead capacity offering strat-
egy for DCS to provide regulation services. To cope with
the uncertain market signals and buildings’ random cooling
demands, the problem is formulated as a MDP. Then, to
address the challenge from the complex physical model, we
adopt a model-free DRL algorithm, i.e., DDPG, to seek the
effective policy of the MDP. Furthermore, to decrease the
probability of aggressive explorations in the training process,
an intrinsic-motivated method based on the pseudo-count is
proposed to improve the training efficiency. The proposed in-
trinsic motivated DRL framework can combine with different
DRL algorithms to improve the agent’s training efficiency,
and be applied in other decision-making problems in power
systems, such as the dispatch of electric vehicles, and batteries.

Numerical results show that the well-trained agent can
strategically offer DCS’s regulation capacities properly to
maximize the total cumulative revenue, while satisfying the
performance requirement from the market and the comfort
requirement from buildings. The proposed method improves
the training efficiency significantly and is “safer” compared
with traditional DRL methods, because it can obtain a same
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TABLE II: The comparison of DCS power consumption with and without providing regulation services

Days Power consumption without regulation Power consumption with regulation Power consumption differences
Day 01 1508.64 MWh 1443.84 MWh -64.8 MWh (-4.30%)
Day 02 1651.20 MWh 1682.88 MWh -31.68 MWh(1.92%)
Day 03 71.65 MWh 72.80 MWh 1.15 MWh(1.61%)
Day 04 1719.6 MWh 1886.16 MWh -65.28 MWh(-3.35%)
Day 05 1189.2 MWh 1225.44 MWh 36.24 MWh (3.05%)
Day 06 1560.48 MWh 1439.04 MWh -49.92 MWh (-3.32%)
Day 07 1658.88 MWh 1649.76 MWh -9.12 MWh (-0.55%)
Average 1595.28 MWh 1582.08 MWh -13.2 MWh(-0.70%)

or better controller through less constraint violations. However,
the proposed method can only decrease the constraint violation
by improving the training efficiency, which is suitable for
problems with soft constraints. It cannot achieve the strict
safety of the hard constraint that requires zero violations,
which will be our future work.

Although all the experiments are implemented in the simu-
lation environment, it can still prove that the proposed method
outperforms the traditional ones in the same environment.
Considering the gap between the simulation and reality, how
to deploy the DRL controller to combine with the real-world
system will be our next work.
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