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Abstract—Joint chance-constrained optimal power flow (JCC-
OPF) is a promising tool for managing distributed renewable
generation uncertainties. However, existing works are usually
based on power flow equations, which require accurate network
parameters that may be unobservable in many distribution
systems. To address this issue, this paper proposes a learning-
based surrogate model for JCC-OPF with renewable generation.
This model equivalently converts joint chance constraints into
quantile-based forms. Two multi-layer perceptrons are trained
based on special loss functions to predict the quantile of con-
straint violations and expected power loss. By reformulating
these two MLPs into mixed-integer linear constraints, we can
replicate the JCC-OPF without network parameters. Two pre-
processing steps, i.e., data augmentation and calibration, are
further developed to improve its performance. The former trains
a simulator to generate more training samples for enhancing
the prediction accuracy of MLPs. The latter designs a positive
parameter based on empirical prediction errors to calibrate the
outputs of MLPs so that feasibility can be guaranteed. Numerical
experiments based on the IEEE 33- and 123-bus systems validate
that the proposed model can achieve desirable feasibility and
optimality simultaneously with no need for network parameters.

Index Terms—Optimal power flow, joint chance constraints,
deep quantile regression, distribution network, distributed re-
newable generation.

NOMENCLATURE

Sets
B Index set of branches.
L, Lpl Index set of hidden layers in the quantile-MLP and

loss-MLP.
N Index set of historical samples.

Parameters
GDG Available distributed generation (MW).
G

DG
Forecast of available distributed generation (MW).

ĥ Labels generated by the XGBoost simulator.
Imax Upper bounds of magnitudes of branch current (kA).
N l Neuron number in the l-th hidden layer of the

quantile-MLP.
pd, qd Active and reactive power demands (MW).
rij , xij Resistance and reactance of branch (i, j) (p.u.).
V min, V max Lower and upper bounds of magnitudes of bus

voltages (p.u.).
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W , b Weights and bias of quantile-MLP.
W loss, bloss Weights and bias of loss-MLP.
α, β Probability parameters.
δ Empirical prediction error.
ϵ Risk parameter in chance constraints.
κBeta, κWeibull Scaling factors for generating uncertainty samples.
ρ Calibration parameter.
ϕ Ratios of actual active outputs of distributed gener-

ators to their reactive outputs.

Uncertainties
ω Uncertain level of distributed generation.

Variables
G Energy purchasing from the upper-level grid (MW).
h Maximum violation of power flow constraints.
I Magnitudes of branch currents (kA).
p, q Nodal active and reactive power injections (MW).
pDG Actual used active distributed generation (MW).
ploss Total power loss (MW).
p̂loss Prediction of the expected total power loss given by

the loss-MLP (MW).
P , Q Active and reactive power flows (MW).
r, µ Auxiliary variables.
V , I Magnitudes of voltages and currents (p.u).
x Collection of nodal active and reactive power injec-

tions (MW).
zl, sl Outputs of linear mapping and ReLU in neurons.
λ Actual utilization rates of distributed generation on

each bus.
Qω

1−ϵ(h) 1 − ϵ quantile of the maximum violation of power
flow constraints.

Q̂1−ϵ(x) Prediction of Qω
1−ϵ(h).

Operators and functions
I Indicator function.
Pω(·) Probability under the effects of uncertainty ω.
Eω(·) Expectation under the effects of uncertainty ω.

I. INTRODUCTION

OPTIMAL power flow (OPF) plays a critical role in
the operation of distribution networks [1]. By solving

OPF, network operators can find the most economical dispatch
strategy while ensuring operational security. However, since
distributed generation (DG) has been increasingly integrated
into distribution networks [2], considerable uncertainties are
introduced, which dramatically increases the difficulty of
solving OPF [3]. Traditionally, the uncertainties in OPF
are usually managed by robust optimization [4] or stochas-
tic programming [5]. However, robust optimization usually
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derives overly conservative solutions because it requires that
constraints should be satisfied even in extreme conditions.
Stochastic programming may be time-consuming since it in-
troduces many additional variables and constraints to describe
different scenarios. Chance constrained programming (CCP)
is an alternative method to account for the uncertainties from
DG in OPF [6]. It allows constraint violations with a small
probability so that operators can effectively balance robustness
and optimality based on their preferences. Moreover, once we
find tractable reformulations of chance constraints, CCP can
achieve great optimality and computational efficiency simul-
taneously. Many recent efforts have also been made to apply
CCP to OPF. Reference [7] combined CCP to the linearized
DistFlow model to coordinate uncertain DG with flexible
resources in distribution networks. Reference [8] applied CCP
to a linearized AC OPF model to schedule wind generation.
However, the above papers used individual chance constraints
to control the violation probability of every critical constraint.
This individual manner may not guarantee the joint satisfaction
probability of all critical constraints [9].

Joint chance-constrained optimal power flow (JCC-OPF)
directly restricts the joint satisfaction probability of all critical
constraints [10]. Hence, it is preferable for ensuring system-
level security. For instance, references [11], [12] employed
JCC-OPF to restrict the joint probability of critical con-
straint violations, where Bonferroni approximation was used
to convert joint chance constraints into solvable individual
ones. Reference [13] proposed a joint chance-constrained
linearized DistFlow model to schedule the reactive power
compensation for distribution networks. References [14], [15]
combined JCC-OPF with a scenario approach to reformulate
the probability constraints into tractable deterministic forms.
However, most existing works still face two challenges:

1) Most published works, including [10]–[15], are based
on power flow equations, which require accurate power
network parameters (e.g., network topology and branch
impedance). However, these parameters may be un-
known in distribution networks due to unaware topology
changes or inaccurate data maintenance [16].

2) Existing papers usually introduce approximations (e.g.,
the linearized DistFlow [13]) or relaxations (e.g., the
semi-definite relaxation of the DistFlow [14], [15]) so
that the impacts of uncertainties are convenient to de-
scribe. However, these approximation or relaxation mod-
els may affect the optimality or feasibility of solutions.
For instance, reverse power flows may occur in radial
distribution networks with high DG penetration. In that
case, the semi-definite relaxation is not exact and may
not ensure feasibility [17].

Due to the widespread use of smart meters, collecting
operational data (e.g., power injections, bus voltages, and
branch currents) in distribution systems has become easier and
cheaper nowadays. Since this data contains some knowledge of
distribution network parameters, learning-based methods may
directly utilize this data to solve OPF, which may overcome
the above two challenges [18]. The published learning-based
methods for OPF problems can be generally divided into the

following four categories.
1) Learning-assisted methods: Learning-assisted methods

usually leverage machine learning techniques to help model-
based methods to make chance constraints tractable. For
instance, references [19], [20] employed the Gaussian mixture
model to approximate non-Gaussian uncertainties in OPF with
Gaussian uncertainties. Then, chance constraints can be easily
reformulated into tractable forms. Reference [21] combined
the scenario approach with a learning-based sampling method
to reduce the computational burden. However, they are model-
based methods, in which network parameters are still required.

2) OPF-then-learn methods: OPF-then-learn methods first
generate a training dataset by solving multiple OPF instances,
where the input features are usually the system’s operation
conditions (e.g., power demands and/or uncontrollable re-
newable generation) and the output labels are OPF solutions
(e.g., power schedules), respectively. Then, supervised learning
models are trained to predict optimal solutions of OPF based
on given inputs directly. For example, references [22], [23]
trained multi-layer perceptrons (MLPs) to predict solutions
of DC and AC OPF problems. These methods were further
combined with the Lagrangian dual approach [24] or recon-
struction steps [25] to enhance their feasibility. Reference
[26] replaced MLPs with graph neural networks to improve
prediction accuracy. Reference [27] extended these methods to
probabilistic OPF by replacing MLPs with Gaussian process
regression. Generally speaking, these methods can reduce the
solving time of OPF because the solving process is replaced by
the inference of learning models. However, they require OPF
solutions as training labels. In order to generate these labels,
they still need to solve physical model-based OPF problems.

3) Reinforcement learning: Reinforcement learning (RL)
trains agents in a specific environment to maximize the cu-
mulative reward (e.g., the opposite of energy purchasing from
the upper-level grid). In reference [28], RL was combined with
the Lagrangian dual approach to solve OPF with guaranteed
feasibility. In reference [29], behavior cloning was combined
with RL to generate a desirable initial start so that the
training process can be accelerated. Besides, RL has also been
applied to many other scheduling problems, such as volt-VAR
optimization [30] and battery controls [31]. Since RL can be
model-free, it has the potential to solve OPF without network
parameters. However, RL needs lots of “trial-and-error” based
on interactions with the existing distribution systems to learn
a policy. The “trial-and-error” can be risky for real distribution
systems and is unacceptable in practice.

4) Constraint learning methods: Constraint learning meth-
ods usually train neural networks to learn OPF constraints.
For instance, references [32], [33] trained binary classifiers
to judge the feasibility of a given decision. Then, the trained
classifiers were equivalently reformulated as mixed-integer lin-
ear constraints so that the OPF problems could be replicated.
Reference [34] replaced the binary classifiers with a regres-
sion neural network to improve the feasibility of solutions.
Constraint learning only requires operational data instead of
OPF solutions as training labels, so the requirement of network
parameters can be bypassed. However, it is challenging for
constraint learning to handle joint chance constraints. Specif-
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ically, if we wish to learn joint chance constraints, then our
training sets must contain enough samples of statistical results
(e.g., the quantile of constraint violations). However, these
samples are difficult to collect because only realizations of
variables can be observed in practice.

To overcome the aforementioned challenges, this paper
proposes a data-driven surrogate model for JCC-OPF with
renewable generation. The specific contributions are twofold:

1) We extend the conventional constraint learning methods
to joint chance constraints and develop a surrogate
model for JCC-OPF. Two MLPs are trained to predict
the quantile of the maximum constraint violation and
expectation of the power loss. Inspired by deep quantile
regression techniques, we introduce special loss func-
tions so that these MLPs can be trained based on only
historical realizations. Then, by reformulating these two
MLPs into mixed-integer linear constraints, JCC-OPF
can be replicated without network parameters.

2) We design two pre-processing steps, i.e., data augmenta-
tion and calibration, to improve the performance of the
proposed surrogate model. The former trains a simulator
based on historical data to generate more samples for
improving the accuracy of MLPs. The latter calibrates
the outputs of MLPs based on empirical prediction errors
to help enhance the feasibility of the solutions.

The remaining parts are organized as follows. Section II
describes the formulation of the JCC-OPF problem. Section
III introduces the proposed learning-based surrogate model in
detail. Section IV demonstrates simulation results, and Section
V concludes this paper.

II. FORMULATION OF JCC-OPF

In this section, we first introduce the traditional model-based
formulation of JCC-OPF.

1) Power injections: By using i ∈ V to index buses, the
active and reactive power injections on each bus, i.e., p ∈ R|V|

and q ∈ R|V|, can be expressed as:

p = −pd + pDG, q = −qd + ϕ ∗ pDG, (1)

where pd and qd represent the active and reactive power
demands on each bus, respectively; pDG is the actual used
active power from DG; ϕ is a ratio of the actual active
power of DG to its reactive power; ∗ denotes the element-
wise multiplication. The actual used active power pDG can be
expressed by:

pDG = λ ∗GDG, (2)

where λ and GDG are the actual utilization rate and maximum
available value of DG, respectively. In practice, the value of
GDG is uncertain, which can be expressed as follows:

GDG = G
DG ∗ (1+ ω), (3)

where G
DG

represents the nominal available DG obtained by
predictions and ω is the corresponding uncertain level.1

2) Power flow model: The power flow model of a radial
network can be expressed by the DistFlow model [35]:

∑
k∈Cj

Pjk = pj + Pij − rijI2ij ,∑
k∈Cj

Qjk = qj +Qij − xijI2ij ,
V 2
j = V 2

i − 2(rijPij + xijQij)

+(r2ij + x2ij)I
2
ij ,

I2ij =
P 2

ij+Q2
ij

V 2
i

,

∀(i, j) ∈ B, (4)

where Pij and Qij are the active and reactive power flows on
branch (i, j), respectively; Vi and Iij are the magnitudes of the
voltage at bus i and current on branch (i, j), respectively; rij
and xij denotes the resistance and reactance of branch (i, j),
respectively. Set Cj contains the child bus indexes of bus j.
Set B represents the index set of branches in this network.

3) Security constraints: To ensure operation security, the
magnitudes of all bus voltages and branch currents shall
maintain in the corresponding allowable ranges. According to
(1)-(4), the uncertainties from DG also affect the bus voltages
and branch currents. To better balance the optimality and
feasibility of solutions, a joint chance constraint is employed
to describe the voltage and current limitations:

Pω
(
V min ≤ V ≤ V max, I ≤ Imax) ≥ 1− ϵ, (5)

where Pω(·) denotes the probability of constraints satisfaction
under the influence of uncertainty ω; V and I are the vector
forms of Vi and Iij ; ϵ is the risk parameter.

4) Energy purchasing: The energy purchasing from the
upper-level grid, i.e., G, can be calculated based on the
network-level power balance:

G = 1⊺pd + ploss − λ⊺GDG, (6)

where ploss is the total power loss and can be calculated by:

ploss =
∑

(i,j)∈B

rijI
2
ij . (7)

Finally, the JCC-OPF is formulated as:

min
λ,G

Eω(G), s.t.: Eqs. (1)-(7). (P1)

where Eω(·) is the expected energy purchasing from the upper-
level grid under the effects of uncertainty ω.

III. SOLUTION METHODOLOGY

As mentioned in Section I, formulating P1 may be chal-
lenging because some network parameters are often unknown.
Therefore, we propose a learning-based surrogate model to
address the previous challenge. This model first introduces
deep quantile regression to replicate the joint chance constraint
(5). Meanwhile, another neural network is trained to predict

1 In practice, the available outputs of different distributed generators may
have potential correlations. Since these correlations are already contained
in the operational data, they can be learned by neural networks. Thus, the
proposed learning-based model can also consider these correlations.
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the expected power loss. Then, by reformulating the trained
neural networks into mixed-integer linear constraints, P1 can
be replicated without network parameters.

A. Deep quantile regression to replicate chance constraints

1) Motivation: The joint chance constraint (5) can be equiv-
alently reformulated into quantile-based deterministic forms.
Specifically, we define x as the nominal active and reactive
power injections on each bus (except the root bus):

x = [p, q]. (8)

We also define a new variable h as the maximum violation of
OPF constraints:

h(x,ω) = max {V min − V (x,ω),V (x,ω)− V max,

I(x,ω)− Imax }. (9)

Note the impacts of the uncertainty from DG, i.e., ω, have
been implied in the samples of h(x,ω) because both the
voltage V and current I are affected by ω. Based on (9),
the joint chance constraint (5) can be expressed as:

Pω (h(x,ω) ≤ 0) ≥ 1− ϵ, (10)

which can be further equivalently reformulated into the fol-
lowing quantile-based form:

Qω
1−ϵ(h(x,ω)) ≤ 0, (11)

where Qω
1−ϵ(h(x,ω)) is the 1− ϵ quantile of h at a given x:

Qω
1−ϵ(h(x,ω)) = inf{y : Pω (h(x,ω) ≤ y) ≥ 1− ϵ}. (12)

According to (11), if the mapping from x to Qω
1−ϵ(h(x,ω))

can be accurately described by simple relations, then the the
joint chance constraint can be tractable. This motivates us to
introduce a powerful deep learning technique, deep quantile
regression, to predict Qω

1−ϵ(h(x,ω)).
2) Introduction of deep quantile regression: Traditional

regression is a process to model the relationship between
dependent output variables and independent input variables.
For example, based on the dataset {(xn,ωn, hn)}n∈N (N is
the index set of samples), we can train a regression model
ĥ(x,ω) to predict h with a given x and ω. The mean
squared error is usually employed as the loss function to train
traditional regression models:

LossR = (h(x,ω)− ĥ(x,ω))2. (13)

When traditional regression models are employed to pre-
dict the quantile Qω

1−ϵ(h(x,ω)), they require samples of
Qω

1−ϵ(h(x,ω)) as the training labels. However, historical
operational data may not contain sufficient quantile samples.

Conversely, deep quantile regression can predict the quantile
only based on realizations of h [36]. This advantage results
from a special loss function, as follows:

LossQR = ψ · (1− ϵ− I(ψ ≤ 0)). (14)

Here ψ = h − Q̂1−ϵ(x), where Q̂1−ϵ(x) is the prediction
of Qω

1−ϵ(h(x,ω)) given by the quantile regression. Symbol
I(·) denotes the indicator function. The following Proposition

Input Layer Hidden Layers Output Layer
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Fig. 1. Structure of an example MLP with 3 hidden layers, where zn,l and
sn,l denote the outputs of the linear mapping and ReLU of the n-th neroun
in layer l, respectively.

proves that we can predict the quantile without quantile
samples based on the loss function (14).

Proposition 1. The quantile Qω
1−ϵ(h(x,ω)) can be obtained

by minimizing the expectation of (14), as follows [36]:

Qω
1−ϵ(h(x,ω)) = argmin

Q̂1−ϵ(x)

E(LossQR). (15)

Proof : See Appendix A.
As a result, we can train a quantile regression neu-

ral network based on the historical realizations, i.e.,
{(xn, hn)}n∈N to represent the mapping from x to the
quantile Qω

1−ϵ(h(x,ω)). Note the label hn is noisy due to
the impacts of ω.

3) Replication of joint chance constraints: With the noisy
dataset {(xn, hn)}n∈N , we can train a quantile regression net-
work Q̂1−ϵ(x) to predict the target quantile Qω

1−ϵ(h(x,ω)).
Then, Eq. (11) is replaced by:

Q̂1−ϵ(x) ≤ 0. (16)

This paper chooses an MLP with ReLU activation as the
quantile regression model. For convenience, this MLP is called
“quantile-MLP.” A typical MLP is composed of one input
layer, |L| hidden layers, and one output layer, as shown in Fig.
1. Each neuron is made up of a linear mapping and a nonlinear
ReLU function. By using symbol l to index the hidden layers
(l ∈ L), the target quantile can be estimated by the forward
propagation of the trained quantile-MLP, as follows:

s0 = x, (17)
zl = Wlsl−1 + bl,∀l ∈ L, (18)
sl = max(zl, 0), ∀l ∈ L, (19)

Q̂1−ϵ(x) = W|L|+1s|L| + b|L|+1. (20)

Eq. (17) defines the input layer; Eqs. (18) and (19) represent
the linear mapping and ReLU in hidden layers, respectively;
Eq. (20) defines the output layer. Vector zl and sl are the
outputs of the linear mapping and activation function in hidden
layer l; Matrix Wl and vector bl are the weights and bias of
layer l, which are parameters to be learned; Q̂1−ϵ(x) is the
estimation of Qω

1−ϵ(h(x,ω)) given by the quantile-MLP.

Remark 1. We can also let the quantile-MLP output multiple
quantile values at once so that operators can adjust their
operational strategies based on their preferences. To realize
this, we only need to change its forward propagation into:Eqs. (17)-(19),[

Q̂1−ϵi(x),∀i ∈ I
]⊺

= W|L|+1s|L| + b|L|+1,
(21)
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where I is the index set of risk parameters. Then, even if
multiple quantile values are required, only one single MLP
needs to be trained.

B. Replication of the objective

Based on (6), the objective of P1 can be calculated by:

Eω(G) = Eω
(
1⊺pd + ploss − λ⊺GDG) ,

= 1⊺pd + Eω(ploss)− λ⊺GDG. (22)

Eq. (22) indicates that the expected power loss is necessary.
According to (7), the power loss calculation needs branch
currents, so the power flow model is still required. To bypass
this requirement, another MLP (we call it “loss-MLP”), is
trained to predict the expected power loss. The samples of
nominal power injection x and power loss ploss are treated as
the features and noisy labels (ploss is affected by the uncertainty
ω), respectively. The mean squared error is employed as the
loss function, as follows:

Lossloss = (ploss − p̂loss(x))2, (23)

where p̂loss(x) is the prediction given by the loss-MLP.

Proposition 2. The expected power loss can be obtained by
minimizing the expectation of (23), as follows:

Eω(ploss) = argmin
p̂loss(x)

E(Lossloss). (24)

Proof : See Appendix B.
After training, the expected power loss can be also predicted

based on the forward propagation of the loss-MLP:

sloss
0 = x, (25)

zloss
l = W loss

l sloss
l−1 + bloss

l ,∀l ∈ Lloss, (26)

sloss
l = max(zloss

l , 0), ∀l ∈ Lloss, (27)

Eω(ploss) = W loss
|Lloss|+1s|Lloss| + bloss

|Lloss|+1, (28)

where the subscript “loss” is used to mark those variables
belonging to the loss-MLP.

C. Mixed-integer linear replication of JCC-OPF

Once the two MLPs are trained, the quantile of the max-
imum constraint violation and expected power loss can be
predicted by (17)-(20) and (25)-(28) with no need for building
any power flow model. However, Eqs. (19) and (27) are
intractable due to the maximum operator. To address this,
we employ the Big-M method used in [32]–[34] to convert
these intractable constraints into mixed-integer linear forms.
Specifically, by introducing auxiliary variables rl and µl for
each hidden layer, Eqs. (18)-(19) can be reformulated as:

sl − rl = Wlsl−1 + bl,

0 ≤ sl ≤M · µl,

0 ≤ rl ≤M · (1− µl),

µl ∈ {0, 1}Nl ,

(29)

where M is a big enough real number; Nl denotes the neuron
number in the l-th hidden layer of the quantile-MLP. Here

each element of vector µl also represents the activation state
of every neuron. If the n-th element µn,l equals one, then the
n-th neuron in hidden layer l is “active” (i.e., its ReLU’s input
is non-negative). If µn,l = 0, then this neuron is “inactive”
(i.e., its ReLU’s input is negative). Note that many published
works have confirmed the exactness of the transformation from
(18)-(19) to (29) [37], [38]. Thus, this transformation does not
introduce any additional approximation error.

Similarly, Eqs. (26)-(27) can be equivalently converted into
the same form of (29), which is recorded as follows:

{Eq. (29)}loss
. (30)

Then, the original JCC-OPF problem, P1, can be replicated
by the following learning-based surrogate model:

min
λ,G

Eω(G), (P2)

s.t. Eqs. (8), (16), (17), (20), (22), (25), and (28)-(30).

Obviously, the auxiliary binary variable number in P2 is the
same as the total neuron numbers of the two MLPs.

Remark 2. The proposed surrogate model only requires
historical samples to train MLPs but does not need to build
an exact power flow model. As a result, even if some network
parameters are unobservable so that an OPF model can not
be formulated mathematically based on physical laws, we
can still find the solutions for the JCC-OPF by solving the
proposed data-driven surrogate model.

D. Pre-processing to improve performance

1) Motivation: If the quantile-MLP is directly trained based
on the historical dataset {xn, hn}n∈N , its prediction accuracy
may be undesirable. Specifically, the historical dataset usually
only contains one sample {xn, hn} at x = xn (other samples
usually have different x). Thus, the quantile-MLP may not
learn the true distribution of h at x = xn well. Moreover,
even if we have sufficient samples to train the quantile-MLP,
prediction errors are still inevitable, which may harm the
feasibility of solutions. Thus, two pre-processing steps, i.e.,
data augmentation and calibration, are designed to improve
the performance of the proposed model.

2) Data augmentation: We design a data augmentation step
to construct an ideal training set for the quantile-MLP. Its key
idea is very straightforward: Train a simulator based on the
historical data and use this simulator to generate more training
samples. The detailed procedure is summarized in Table 1.
Then, at a given x = x(k), multiple labels, i.e., {h(k)n }Nω

n=1

can be generated. As a result, the distribution of h can be
explicitly described. Here the XGBoost regressor is used as
our simulator due to its great prediction accuracy [39].

3) Calibration: Although the XGBoost-based simulator can
generate sufficient training data, the generated data may not
present the true distribution. In other words, the prediction
errors of the simulator may be significant. To guarantee
the feasibility of solutions, we further design a calibration
step after data augmentation. Its key idea is to calibrate the
foretasted quantile based on the largest empirical prediction
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Algorithm 1 Data augmentation
01 Simulator training: Train a regressor as our simulator

based on the historical dataset {xn,ωn, hn}n∈N . Its input
and output are (x,ω) and h, respectively;

02 For k ∈ K = [1, 2, · · · ,K]
03 Randomly select one x and multiple ω from the historical

dataset to construct different pairs, and record them as
{(x(k),ω

(k)
n )}Nω

n=1 (Nω is the number of ω we chosen);
04 Give the above pairs as inputs to the simulator to predict

h, and record the predictions as {ĥ(k)
n }Nω

n=1;
05 End for
06 Data collection: Collect the generated pairs and predictions

to construct a new dataset, i.e., {x(k),ω
(k)
n , ĥ

(k)
n }Nω

n=1, ∀k ∈
K. By removing ω

(k)
n , we can get the ideal training set of

the quantile-MLP, i.e., {x(k), ĥ
(k)
n }Nω

n=1,∀k ∈ K.

error of the simulator. Specifically, these empirical prediction
errors can be expressed as:

δn = hn − ĥn, ∀n ∈ N , (31)

where hn is the actual sample of h; ĥn is the prediction of
the simulator; N is the index set of the historical sample. We
use ρ to represent the largest empirical prediction error:

ρ = max
∀n∈N

δn. (32)

Meanwhile, by using ĥn as training labels, we can train the
quantile-MLP to predict the target quantile Qω

1−ϵ(h(x,ω)).
We record this prediction as Q̂1−ϵ(x). Then, the joint chance
constraint (11) can be approximated by:

Q̂1−ϵ(x) + ρ ≤ 0. (33)

Note that we can easily collect sufficient samples of ĥ to train
the quantile-MLP because ĥ is generated by our simulator.
Thus, we can accurately predict Q̂1−ϵ(x).

Proposition 3. Suppose the sample number |N | satisfies:

|N | ≥ 1

α

e

1− e

(
2nδ − 1 + ln

1

β

)
, (34)

where α ∈ [0, 1] and β ∈ [0, 1]; nδ is a parameter and here
we have nδ = 1. Then, the following chance constraint holds
with confidence at least 1− β:

Pω
(
Q̂1−ϵ(x) + ρ ≥ Qω

1−ϵ(h(x,ω))
)
≥ 1− α, (35)

where Q̂1−ϵ(x)+ρ and Qω
1−ϵ(h(x,ω)) are the left-hand side

terms of the proposed approximation (33) and original joint
chance constraint (11), respectively.

Proof : See Appendix C.

Proposition 3 demonstrates that (33) can serve as a conser-
vative approximation of (11) with probability 1−α. According
to (34), the value of α can be kept at a small level when
sufficient samples are used to calculate ρ. In this case, we can
guarantee the feasibility of the proposed model even if there
are prediction errors.

Train Training
set

Data augmentation

Calibration

Historical
data

Simulator
(XGBoost)

Quantile-
MLP

Generate Train

Loss-MLP
Train BigM

BigM

Mixed-integer linear forms,
i.e., Eqs. (29) and (30)

Fig. 2. The whole procedure to establish the proposed surrogate model.

E. Summary of the proposed surrogate model

1) Whole procedure: By applying the pre-processing steps,
P2 can be replaced by the following surrogate model P3:

min
λ,G

Eω(G), (P3)

s.t.: Eqs. (8), (17), (20), (22), (25), (28)-(30), and (33).

Fig. 2 illustrates the procedure for establishing the proposed
learning-based surrogate model. Specifically, we first leverage
historical data to train a simulator for data augmentation.
Then, the quantile-MLP is trained to predict the target quan-
tile Qω

1−ϵ(h(x,ω)). A calibration step is further applied to
improve feasibility. Meanwhile, the loss-MLP is trained based
on the historical data to predict the expected power loss.
Finally, by reformulating these two MLPs into solvable mixed-
integer forms, the proposed surrogate model of JCC-OPF can
be established without network parameters.

2) Measurement requirement: The proposed surrogate
model relies on data measurements from distribution networks.
According to (2) and (8)-(9), the required historical samples
include nodal power injections, bus voltages, and branch
currents. In practice, power injections are usually measured
because they determine the electricity bill of users. However,
since the measurement redundancy on a distribution system
is usually low, only parts of bus voltage and branch currents
are monitored in practice. Nevertheless, we can still calculate
the samples of the maximum constraint violation among the
measured buses and branches based on (9). By using these
samples to train MLPs, the proposed surrogate model can
derive a strategy that can at least guarantee the operational
security of the measured buses and branches. On the contrary,
the model-based methods and other data-driven models (e.g.,
OPF-then-learning methods) can hardly derive a solution in
that case without complete and accurate measurement of
network parameters. As a result, the proposed model is still
meaningful for systems with low measurement redundancy.

In practice, the topology of the distribution network may
change because of network reconfiguration. Hence, the trained
MLPs in one topology might show undesirable performance
in another new topology. Nevertheless, in practice distribution
networks, only a few switches participate in reconfiguration.
Thus, the maximum possible number of topology scenarios is
very limited [40]. Since the switching operations are usually
controlled by operators, so that the switching states can be
easily recorded. Therefore, the operators can train different
MLPs for every topology scenario. As a result, the proposed
model can be readily extended to consider the cases with
topology changes.

3) Advantages of MLPs: Except for MLPs, many other
state-of-art deep learning models, e.g., Convolutional Neural
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Networks (CNNs), Recurrent Neural Networks (RNNs), and
Graph Neural Networks (GNNs), have been employed for
solving OPF problems [26], [41]. Nevertheless, we choose
MLPs instead of other models to serve as the surrogate
model of JCC-OPF. MLPs have simple structures but de-
sirable approximation capability [42]. Moreover, MLPs can
be equivalently reformulated as tractable mixed-integer linear
forms. Conversely, CNNs may not be suitable for JCC-OPF
because they are invariant to translation [42].2 RNNs usually
use hyperbolic tangent activation functions, which are not
piece-wise linear. Thus, it is hard to reformulate RNNs into
tractable forms. GNNs can utilize the topology information to
improve their prediction accuracy [44]. However, the topology
may be unknown in many distribution systems so that GNN
models may be hard to build.

Besides the above state-of-art learning models, many inter-
pretable learning models have also been proposed for power
system modeling, including decision trees [45] and ensemble
models [46]. However, most of them only focused on modeling
instead of scheduling problems like JCC-OPF. Moreover, an
MLP can usually achieve better approximation than a single
decision tree. Thus, we choose MLPs as the surrogate model of
JCC-OPF. Some state-of-the-art techniques can also improve
the interpretability of learning models including MLPs, such
as SHapley Additive exPlanation [47], Local interpretable
model-agnostic explanations [48], and Deep Learning Impor-
tant FeaTures [49]. These techniques can tell the importance
of every feature. However, it is hard for them to fulfill
the need for power system modeling because they may not
explicitly describe the true physics of systems. Enhancing the
interpretability of the proposed model could be an important
future research direction.

IV. CASE STUDY

A. Simulation set up

We implement our case studies based on two test systems,
i.e., the IEEE 33-bus and 123-bus systems. The slack bus
voltages of these two systems, i.e., V1, are 12.66 kV and 4.16
kV (phase-to-phase voltage), respectively. The feasible region
of bus voltages in both systems are set as [0.9 p.u., 1.1 p.u.],
while the maximum allowable branch currents are 0.421 kA
and 0.7 kA (phase-to-phase current), respectively. The ratio of
the DG’s active power to its reactive power, i.e., parameter ϕ
in (1), is set as 0 and 0.33 in these two systems, respectively.
Note that the layout of DG units in a distribution network
can be either concentrated [50] or dispersed [51], [52]. Since
this layout may affect the power flow results significantly,
we design two sets of case studies to better demonstrate
the effectiveness of the proposed learning-based model: 1)
“concentrated layout”, i.e., all DG units are close to each other,
and 2) “dispersed layout”, i.e., different DG units are dispersed
in the power networks. Fig. 3 shows the 33-bus and 123-bus

2Suppose we employ a CNN to recognize dog images. No matter where
the dog is in this image, a CNN can successfully recognize that there is a dog.
This characteristic is called “translation invariance”. However, nodal power
injection data may not be invariant to translation. When a specific power
injection appears on different buses, the corresponding OPF solutions should
also be different, but a CNN may give the same result [43].
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Fig. 3. Structures of the (a) 33-bus and (b) 123-bus test systems with the
concentrated layout, i.e., all DG units are located close to each other. The
nominal maximum available output of each DG unit in (a) is 2 MW, while it
is 1.5 MW in (b).
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Fig. 4. Structures of the (a) 33-bus and (b) 123-bus test systems with the
dispersed layout. Here, the 33-bus system has 16 DG units, while the 123-
bus system contains 25 DG units. In both two systems, the nominal available
output of each DG unit is set as 0.6 MW.

test systems with the concentrated layout, where the nominal
available generation capacities of DG units, G

DG
i , are set as 2

MW and 1.5 MW, respectively. Fig. 4 illustrates the two test
systems with the dispersed layout, and the values of G

DG
i are

set as 0.6 MW in both systems.
We conduct power flow simulations based on Pandapower, a

power system simulation toolbox in Python environment [53],
to generate the historical data. In Pandapower, the power flow
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Fig. 5. (a) Comparison of the actual and predicted solar radiation and (b) the
probability density of uncertainty ω calculated by forecasting errors.

calculation is based on the full AC power flow model. During
the simulations, we first randomly generate 10,000 pairs of
nominal bus power injections and uncertain levels of DG, i.e.,
(x,ω). Here the nominal power injection x is generated by
a uniform distribution between its minimum and maximum
allowable values. Based on these pairs, we can calculate the
actual power injections on each bus, and then the bus voltages
V and branch currents I can be calculated by Pandapower.
With V and I , the power loss ploss and maximum constraint
violation h(x,ω) can be obtained based on (7)-(9). Then,
following Algorithm 1, we conduct the data augmentation
to generate the training set for the quantile-MLP. The two
parameters Nω and K in Algorithm 1 are set as 1000 and
100, respectively.

To demonstrate the generalization ability of the proposed
model, we use different distributions to simulate the samples
of the uncertain level ω, as follows:

1) Case 1: The samples of ω are simulated by a Gaussian
distribution, i.e., ω ∼ Gaussian(0, 0.1);

2) Case 2: The samples of ω are generated based on a Beta
distributed uncertainty ω

′
, i.e., ω = κBeta(ω

′ − µbeta),
where ω

′ ∼ Beta(2, 6);
3) Case 3: The samples of ω are simulated based

on a Weibull distributed uncertainty ω
′
, i.e., ω =

κWeibull(ω
′ − µWeibull), where ω

′ ∼Weibull(1, 5).
4) Case 4: The samples of ω are simulated based on real

solar radiation data in Hawaii [54]. Fig. 5 illustrates
the prediction results of the forecasting model and
probability density of uncertainty ω.

The scaling factor κBeta/κWeibull is designed to make the mag-
nitudes of the generated ω more realistic, while the constant
µ is set as the expectation of ω

′
to make the expectation of ω

keep at zero. All these samples have been uploaded to [55].
All numerical experiments are implemented on an Intel(R)

8700 3.20GHz CPU with 16 GB memory. The quantile-MLP
and loss-MLP are established based on Pytorch. Problem P3
is built by CVXPY and solved by GUROBI.

B. Benchmarks

To demonstrate the superiority of the proposed model, we
introduce the following four model-based benchmarks:

1) B1: Linearized DistFlow model used in [7], [13] com-
bined with the scenario approach;

2) B2: Second-order cone programming (SOCP) relaxation
of AC OPF model used in [14], [15]3 combined with the
scenario approach;

3Note that the SOCP relaxation is equivalent to the semi-definite relaxation
of OPF in radial distribution networks [17].

3) B3: Risk-neutral full AC OPF model, which is directly
implemented in Pandapower.

4) Baseline: A line searching-based method that provides
near optimal solutions, which is introduced in detail in
the following paragraph.

Benchmarks B1-B3 introduce approximations or relax-
ations, so their solutions may not be optimal. Thus, even if
the proposed model shows better performance than B1-B3, we
may be unable to justify its effectiveness. To address this issue,
we further design a line searching method as our Baseline. In
Baseline, we first initialize the decision variable λ with an
all-one vector and regard −GDG

as the searching direction
to update λ. The update stepsize α is set as 0.0025. Then,
we combine the updated λ with different uncertainty sample
{ωn}∀n∈N to construct multiple pairs, i.e., {(λ,ωn)}∀n∈N .
Each pair is sent to Pandapower to calculate corresponding
voltages and currents. By counting the number of ωn that
makes the updated λ violate voltage and current limitations,
we can check whether the updated λ can satisfy the joint
chance constraint (5). Finally, the benchmark Baseline outputs
the largest λ that can satisfy (5). Since Baseline needs to
solve many OPF instances to check the feasibility of each
updated λ, it is very time-consuming. Nevertheless, it can
achieve desirable optimality because the largest feasible λ
can be found. As a result, we can justify the accuracy of the
proposed model by comparing it to Baseline.

C. Case study with the concentrated layout

This section conducts the case study with the concentrated
layout, i.e., all DG units are close to each other. Specifically,
we compare the average utilization rates of DG, violation
probabilities of the joint chance constraint (5), energy purchas-
ing from the upper-level grid, and solving times of different
models in both the 33-bus and 123-bus systems shown in
Fig. 3. Appendix D introduces the calculation methods of the
average utilization rates and violation probabilities in detail.

1) 33-bus test system: We first evaluate the prediction
accuracy of the quantile-MLP and loss-MLP by comparing
the true and predicted values of the quantile of the maximum
constraint violation, i.e., Qω

1−ϵ(h(x,ω)), and expectation of
power loss, i.e., Eω(ploss). The neuron numbers of the quantile-
MLP are set as (25, 25, 25), i.e., three hidden layers with 25
neurons in each layer, while the neuron numbers of the loss-
MLP are set as (10, 10, 10). Note that the historical operational
dataset only contains realizations but does not contain quantile
or expectation samples. Nevertheless, with the realizations of
h and ploss, we can construct more samples with the same
x and different ω, i.e., {(xi,ωn, hn, p

loss
n )}∀n∈N . Then, the

actual quantile and expectation can be calculated based on
the sample set {(xi,ωn, hn, p

loss
n )}∀n∈N . During the training

of neural networks, 70% of historical samples are randomly
selected as the training set, while the rest 30% of samples
are used as the testing set. Fig. 6 compares the actual and
predicted values of the 80% quantile and expected power loss
on the testing set in Cases 1-3. Obviously, most samples are
very close to the red lines, which demonstrates the accuracy
of MLPs. However, in Figs. 6 (a), (c), and (e), the prediction
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Fig. 6. Comparisons of actual and predicted values of (a) 80% quantile of
constraint violation in Case 1 (Gaussian uncertainties), (b) expected power loss
in Case 1, (c) 80% quantile of constraint violation in Case 2, (d) expected
power loss in Case 2 (Beta uncertainties), (d) 80% quantile of constraint
violation in Case 3 (Weibull uncertainties), (e) expected power loss in Case
3 . The red line represents the position where predictions equal actual values.
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Fig. 7. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities of the joint chance constraint (5), (c) energy purchasing from the
upper-level grid, and (d) solving times in Case 1 (the uncertainty ω follows a
Gaussian distribution). Dot lines represent infeasible results. In (b), the green
and red areas denote the feasible and infeasible regions, respectively.

errors of the quantile-MLP become significant when the actual
quantile Qω

1−ϵ is around -0.2. Nevertheless, if the quantile
is much smaller than zero, e.g., Qω

1−ϵ ≤ −0.1, the chance
constraint (5) is inactive. In this case, the prediction error is
almost always negative, i.e., the MLP’s prediction is smaller
than the corresponding actual value, so this prediction is also
negative. As a result, the chance constraint (5) is still inactive
in the surrogate model and does not affect the optimal solution.
Hence, although there are significant prediction errors when
Qω

1−ϵ is far below zero, the proposed model can still achieve
desirable accuracy.

After evaluating the accuracy of MLPs, we compares the

performances of different models in Cases 1-4 with various
uncertainties. Fig. 7 compares the results of different models
in Case 1. Among all models, the linearized DistFlow model,
B1, derives the most conservative results, while its violation
probability and utilization rate of DG are the lowest. In order
to linearize the DistFlow, B1 not only ignores the nonlinear
constraint, i.e., the last equation of (4), but also removes all
the terms related to current Iij . Reference [56] pointed out that
B1 overestimated bus voltages. Considering that promoting the
integration of DG will increase bus voltages, less DG can be
utilized in B1 because its overestimated bus voltages are still
required to be smaller than the corresponding upper bound.
Nevertheless, its solution is always feasible for the joint chance
constraint (5). Conversely, the SOCP relaxation B2 shows very
poor feasibility (its violation probability approaches 100%,
which is much higher than the risk parameter), although it
achieves the highest utilization rate of DG and lowest energy
purchasing. This is because reverse power flows occur in the
system, which makes its SOCP relaxation inexact. The risk-
neutral model B3 also fails to meet the joint chance constraint
(5) since it directly ignores the impacts of uncertainties. Thus,
both B2 and B3 are not applicable to distribution systems with
high DG penetration. Since Baseline exhaustively searches the
domain of decision variables, it achieves the best optimality
with guaranteed feasibility among all models. However, it
needs to solve a huge number of OPF instances, so its
computational efficiency is very poor. The average utilization
rate of DG given by the proposed approach is only slightly
lower than that of the Baseline, while it is much higher
than B1. Meanwhile, the proposed model can always ensure
the feasibility of solutions. Although the proposed model
introduces some binary variables for reformulating MLPs, its
computational efficiency is desirable. For example, the solving
time of the proposed approach keeps around 0.3s and is
three to four orders of magnitude smaller than that of the
Baseline. As mentioned in III-C, the binary variables in the
proposed model correspond to the activation states of neurons
in MLPs. Once critical constraints are introduced to restrict
the input x, many neurons become stably active or inactive.
Since the activation states of these neurons are fixed, the
corresponding binary variables are also constant. Table I shows
the numbers of stably active and inactive neurons in Cases
1-3. Over half of neurons have stable activation states, so
the corresponding binary variables can be regarded as known
parameters. As a result, the proposed model can still achieve
excellent computational performance. Moreover, unlike B1-B3
and Baseline, the proposed model only needs historical data
to train MLPs but does not require the network parameters
to build power flow models. These results demonstrate the
desirable optimality, feasibility, and computational efficiency
of the proposed model.

Fig. 8 compares the results of different models in Case 2, in
which the uncertainty ω follows Beta distribution. The results
are very similar to those in Case 1: the energy-efficiency
of B1 is undesirable, while B2 and B3 can not guarantee
the feasibility of solutions. In contrast, the proposed model
can achieve desirable optimality and feasibility simultaneously
with no need for network parameters. The solving time of the
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TABLE I
NUMBERS OF STABLY ACTIVE AND INACTIVE IN CASES 1-3

Neuron numbers Total Stably
active

Stably
inactive

Case 1 Quantile-MLP 75 24 17
Loss-MLP 30 9 9

Case 2 Quantile-MLP 75 21 17
Loss-MLP 30 10 12

Case 3 Quantile-MLP 75 22 16
Loss-MLP 30 8 11
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Fig. 8. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities, (c) energy purchasing, and (d) solving times in Case 2 (the
uncertainty ω follows a Beta distribution).

proposed model still keeps around 0.3s, which is much smaller
than that of Baseline.

Fig. 9 illustrates the results in Case 3, in which the uncer-
tainty ω follows Weibull distribution. Similarly, the proposed
model achieves better energy-efficiency compared to B1, and
outperforms B2 and B3 on feasibility. Moreover, it shows
much better computational efficiency than Baseline.

Fig. 10 shows the results of different models in Case 4. As
mentioned in Section IV-E, the samples of uncertainty ω are
constructed based on a real solar radiation dataset. Similar to
Cases 1-3, the proposed model achieves better optimality than
B1. Unlike B2 and B3, which fail to satisfy the joint chance
constraint (5), the proposed model can also always guarantee
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Fig. 9. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities, (c) energy purchasing, and (d) solving times in Case 3 (the
uncertainty ω follows a Weibull distribution).
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Fig. 10. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities, (c) energy purchasing, and (d) solving times in Case 4 (the
samples of ω are constructed based on real data [54]).

feasibility. Moreover, although its optimality is slightly worse
than the Baseline, the computational efficiency is much higher.

2) 123-bus test system: We further conduct a case study
based on the 123-bus system to demonstrate the benefits of
the proposed model. The neuron numbers of the quantile- and
loss-MLPs are set as (30, 30, 30) and (10, 10, 10), respectively.
The uncertainties are the same as those in Case 3 (Weibull
uncertainties). The results in Section IV-C show that B1 is
overly conservative. However, this conservativeness may be
contributed by either the power flow approximation (linearized
DistFlow) or the joint chance constraint reformulation (sce-
nario approach). To highlight that the linearized DistFlow
model introduces unnecessary conservativeness, we modify
the benchmark B1 as B1-SAA, in which the joint chance
constraint is handled by sample average approximation (SAA).
SAA is a promising way to handle joint chance constraints
with excellent optimality, but it is also time-consuming be-
cause numerous binary variables need to be involved [6].

The results on the 123-bus system are shown in Fig.
11. Similar to the results on the 33-bus system, the SOCP
relaxation B2 can not always guarantee feasibility due to the
existence of reverse power flows. The risk-neutral model B3
also fails to satisfy the joint chance constraint because it ig-
nores the impacts of uncertainties. For the linearized DistFlow
B1-SAA, its energy purchasing amount is much higher than
that of the proposed model. This result indicates that the
linearized DistFlow introduces significant conservativeness.
Moreover, since SAA needs to introduce a large number of
binary variables, its computational efficiency is much worse
than that of the proposed one. For example, at ϵ = 0.2, the
solving time of B1-SAA reaches 82.63s, while it is only 0.15s
in the proposed model. These results further confirm the great
performance of the proposed model.

D. Case study with the dispersed layout

1) 33-bus test system: This case is built upon the the IEEE
33-bus system with 16 dispersed DG units, as illustrated in
Fig. 4(a). The uncertainty ω follows a Weibull distribution,
which is the same as that in Case 3. The results of the
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Fig. 11. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities, (c) energy purchasing, and (d) solving times in the case based
on the IEEE 123-bus system. Here ω follows a Weibull distribution.
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Fig. 12. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities of the joint chance constraint in JCC-OPF, (c) energy purchasing
from the upper-level grid, and (d) solving times in the 33-bus test case with
16 DG units. The uncertainty ω follows a Weibull distribution.

new case study are shown in Fig. 12. Similar to Cases 1-4,
the linearized DistFlow model B1 obtains the lowest average
utilization rate of DG and highest energy purchasing because
it overestimates bus voltages. The SOCP relaxation B2 shows
very poor feasibility because it is inexact when there are
reverse power flows. The risk-neutral model B3 also fails to
meet constraints since it directly ignores uncertainties. The
searching method Baseline achieves the best optimality but is
computationally expensive. The proposed model can always
ensure the feasibility of solutions with desirable computational
efficiency. Moreover, its optimality is quite close to that of
Baseline and much better than that of B1.

2) 123-bus test system: This test case is based on the IEEE
123-bus system with 25 dispersed DG units. The system struc-
ture is illustrated in Fig. 4(b). The uncertainty ω is assumed to
follow an unknown Weibull distribution, which is the same as
that in the 123-bus test case in Section IV-C. We also introduce
B1-B3 and Baseline as our benchmarks. Fig. 13 shows the
results of this test case. Similarly, since the total active power
demand is only 4.885MW and much smaller than the total
available renewable generation, the distribution network al-
ways sells extra DGs’ outputs in all cases. Benchmarks B1 and
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Fig. 13. Results of (a) average utilization rates of DG, (b) maximum violation
probabilities of the joint chance constraint in JCC-OPF, (c) energy purchasing
from the upper-level grid, and (d) solving times in the 123-bus test case with
25 DG units. The uncertainty ω follows a Weibull distribution.

B2 can be successfully executed only when the risk parameter
ϵ is high (i.e., ϵ ≥ 0.2), while the out-of-memory issue occurs
in the rest cases. Both B1 and B2 are based on the scenario
approach, so their decisions should satisfy all constraints in a
specific number of scenarios. This scenario number positively
correlates with the uncertainty dimension but is inversely
proportional to the risk parameter [14], [15]. Since this system
contains many DG units, its scenario number is relatively
high, especially when the risk parameter is small. Moreover,
both B1 and B2 need to introduce multiple constraints for
every scenario. As a result, their memory usages become
enormous and may exceed the test platform with 16 GB
memory. Besides the unacceptable memory consumption, B1
also performs undesirable optimality because it overestimates
bus voltages. Benchmark B2 fails to satisfy the original joint
chance constraint since the existence of reverse power flows
makes the SOCP relaxation inexact. Benchmark B3 also shows
poor feasibility because it directly ignores the uncertainty’s
impacts. The searching method Baseline achieves the best
optimality performance with guaranteed feasibility. However,
its computational efficiency is significantly worse than those of
others. Unlike B2 and B3, the proposed model can consistently
achieve desirable optimality and feasibility. Its solving time
also maintains a low level and is much better than that of
Baseline. In addition, the proposed model is fully data-driven
and does not require network parameters. These results further
confirm the effectiveness of the proposed model.

In summary, the above cases not only illustrate that the
proposed model can achieve desirable performance without
network parameters but also demonstrate its excellent gener-
alization for arbitrary uncertainties. Moreover, the proposed
model can perform well with both the concentrated and
dispersed DG layouts.

E. Sensitivity analysis

In this section, we investigate the effects of MLPs with
various structures (i.e., different numbers of neurons in MLPs)
on the performance of the proposed surrogate model. The
simulations are based on the IEEE 33-bus system. The hidden

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3223764

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidade de Macau. Downloaded on November 22,2022 at 07:42:11 UTC from IEEE Xplore.  Restrictions apply. 



12

2 5 5 0 7 5 1 0 0 1 2 50 . 0 0
0 . 0 4
0 . 0 8
0 . 1 2
0 . 1 6
0 . 2 0 0 . 1 7 5 0 . 1 5 3 0 . 1 4 8 0 . 1 4 5 0 . 1 2 6

Tra
ini

ng 
los

s

N e u r o n  n u m b e r
(a)

Risk parameter

0.0
0.1

0.2
0.3

0.4
Neuron number

25
50

75
100

125 P
ro

b
ab

ili
ty

(%
)

0
10
20
30
40

(b)

Risk parameter

0.0
0.1

0.2
0.3

0.4
Neuron number

25
50

75
100

125

E
n

er
gy

p
u

rc
h

as
in

g
(M

W
)

0.9
1.0
1.1
1.2
1.3
1.4

(c)

Risk parameter

0.0
0.1

0.2
0.3

0.4
Neuron number

25
50

75
100

125 S
ol

vi
n

g
ti

m
e

(s
)

10−1
100
101
102
103

(d)
Fig. 14. Results of (a) loss function of the quantile-MLP, i.e., Eq. (14),
(b) violation probability, (c) energy purchasing, and (d) solving times under
different neuron numbers. In (b), the red surface represents the maximum
allowable violation probability, i.e, the given risk parameter. In (c), the blue
surface on the top refers to the energy purchasing of B1.

layer numbers of MLPs are fixed at three, and the used samples
of ω are the same as those in Case 1.

1) Neuron number of quantile-MLP: The results of the
proposed model with different neuron numbers in the quantile-
MLP are illustrated in Fig. 14, where “neuron number” refers
to the neuron number in each hidden layer. The structure of
the loss-MLP is fixed as (10, 10, 10). With the growth of
the neuron number, the approximation ability of the quantile-
MLP becomes stronger. Thus, the prediction loss decreases,
as shown in Fig. 14(a). Since we use an inner approximation
(33) to replace the original joint chance constraint (5) in
the calibration step, the maximum violation probabilities are
always lower than the risk parameter, i.e., the red surface
in Fig. 14(b). With the growth of the neuron number, the
prediction error of the quantile-MLP can be either negative or
positive. As a result, both the violation probability and energy
purchasing are not monotonous with respect to the neuron
number. Nevertheless, the energy purchasing of the proposed
model is always lower than that of B1, i.e., the green surface
in Fig. 14(c). The solving time grows rapidly with the increase
of the neuron number, as illustrated in Fig. 14(d). According to
(29), the integer variable number introduced by reformulating
the quantile-MLP is equal to the neuron number. Therefore,
a larger neuron number leads to a higher computational bur-
den. Nevertheless, with a small neuron number, the proposed
model can already achieve desirable optimality and feasibility
simultaneously in a short time, e.g., the solving time is around
0.3s when the neuron number is set as 25.

2) Neuron number of loss-MLP: We further investigate the
effects of the loss-MLP’s neuron number on the proposed
model’s performance, and the results are summarized in Fig.
15. The neuron number of the quantile-MLP is fixed as (25,
25, 25). Similarly, increasing the neuron number can reduce
the training loss of the loss-MLP because this can enhance
the prediction accuracy of the loss-MLP, as shown in Fig.
15(a). However, the power loss is usually much smaller than
the summation of power demands. Therefore, even if we
change the neuron number, the optimality and feasibility of the
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Fig. 15. Results of (a) loss function of the loss-MLP, (b) violation probability,
(c) energy purchasing, and (d) solving times with different neuron numbers
in the loss-MLP.

proposed model’s solutions are nearly constant. Nevertheless,
the violation probability is always lower than the required
values, i.e., the red surface in Fig. 15(b), and the energy-
efficiency is always better than that of B1, i.e., the green
surface in Fig. 15(c). According to (29), the number of the
auxiliary binary variables introduced by reformulating the loss-
MLP equals its neuron number. Thus, a larger neuron number
results in a higher computational burden, as shown in Fig.
15(d). Nevertheless, a small number of neurons is already
enough for the proposed model because excellent optimality
and feasibility can be accomplished.

V. CONCLUSIONS

This paper proposes a deep-quantile-regression-based sur-
rogate model for the JCC-OPF problem. In the proposed
model, two MLPs are trained to predict the 1 − ϵ quantile
of the maximum constraint violation and expected power loss,
respectively. By reformulating the forward propagation of the
two MLPs into mixed-integer linear constraints, the JCC-OPF
problem can be replicated. Two pre-processing steps, i.e., data
augmentation and calibration, are further designed to enhance
the performance of the proposed model. The data augmen-
tation step trains an XGBoost-based regressor to generate
more training samples so that the accuracy of the quantile
regression can be improved. The calibration step designs a
positive parameter to calibrate the deep quantile regression to
improve the feasibility of solutions. Simulation results based
on the IEEE 33- and 123-bus distribution systems confirm
that the proposed model can successfully replicate the JCC-
OPF problem without the network parameters. Moreover, its
optimality is better than the widely used linearized DistFlow
model under arbitrary uncertainties, while its feasibility is also
much better than the SOCP relaxation of AC OPF.

Since the testing cases from the real world may also help us
to improve the performance of the proposed surrogate model,
we envision our future work to test it on a real system so
that its benefits can be further validated. Meanwhile, since
interpretability is important for power system applications,
we wish to extend the proposed surrogate model based on
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explainable learning techniques so that it can achieve desirable
interpretability in the future.

APPENDIX A

Proof of Proposition 1: The term on the right-hand side of
(15) is equal to

E(LossQR) = −ϵ
∫ Q̂1−ϵ

−∞
(h− Q̂1−ϵ)dFH(h)

+(1− ϵ)
∫ ∞

Q̂1−ϵ

(h− Q̂1−ϵ)dFH(h), (36)

where FH(·) denotes the cumulative distribution function of
h(x,ω) at x under the uncertainty ω. At the optimal solution
that minimizes the expectation (36), the derivative of the
expected loss should be zero:

∂E(LossQR)

∂Q̂1−ϵ

∣∣∣∣
y

= 0, (37)

where y is the optimal solution of Q̂1−ϵ. Then, by substituting
(36), Eq. (37) can be converted into the following form based
on the Leibniz integral rule:

ϵ

∫ y

−∞
dFH(h)− (1− ϵ)

∫ ∞

y

dFH(h) = 0. (38)

By substituting FH(−∞) = 0 and FH(∞) = 1, Eq. (38) can
be further reformulated as:

FH(y) = 1− ϵ⇔ y = Qω
1−ϵ(h(x,ω)). (39)

APPENDIX B

Proof of Proposition 2: Based on (23), the expectation of
Lossloss can be expressed as:

E(Lossloss)

= E
(
(ploss − p̂loss(x))2

)
= E

(
(ploss − Eω(ploss))2

)
+
(
Eω(ploss)− p̂loss(x)

)2
= Var(ploss) +

(
Eω(ploss)− p̂loss(x)

)2
, (40)

where Var(ploss) is the variance of ploss. By regarding
E(Lossloss) as a function of p̂loss(x), the minimum value of
E(Lossloss) occurs at p̂loss(x) = Eω(ploss) according to (40).

APPENDIX C

Proof of Proposition 3. The value of h can be expressed as
the simulator’s forecast ĥ plus a prediction error δ:

h(x,ω) = ĥ(x,ω) + δ. (41)

If we treat δ as an uncertain parameter, then the empirical
prediction errors {δn}∀n∈N defined in (31) can be regarded
as the randomly drawn samples of δ. Reference [57] pointed
out that if the sample number |N | satisfies (34), the following
chance constraint holds with confidence 1− β:

Pδ(ρ ≥ δ) = Pδ
(
ĥ(x,ω) + ρ ≥ h(x,ω)

)
≥ 1− α, (42)

where “=” holds because of (41). When both x and ω are
fixed, Eq. (31) only contains one uncertain parameter δ. Thus,

here we have nδ = 1. Suppose we randomly draw one x and
multiple ω. By combining this single x with different ω, we
can construct many data pairs, i.e., {(x,ωn)}∀n∈Nω . These
data pairs correspond to multiple realizations of ĥ and h. We
collect these realizations in two different sets, as follows:{

Ĥ = {ĥ(n) = ĥ(x,ω(n))}∀n∈Nω ,

H = {h(n) = h(x,ω(n))}∀n∈Nω ,
(43)

where ∀n ∈ Nω is the index of realizations. Without loss
of generality, we assume ĥ(1) ≤ ĥ(2) ≤ · · · ≤ ĥ(|Nω|) in Ĥ.
Meanwhile, we can also rearrange the elements of H based on
the order of ω(n) in Ĥ. In other words, the n-th element of H,
i.e., h(n), has the same ω(n) as ĥ(n) in Ĥ. Thus, the elements
in H may not be monotonically increasing. Now, by denoting
NQ = ⌈|Nω| · (1− ϵ)⌉, we can obtain the 1− ϵ quantile of ĥ
by finding the NQ-th element of set Ĥ, as follows:

Q̂1−ϵ(x) = ĥ(NQ), (44)

where ⌈·⌉ is the ceiling function. Since the elements in Ĥ are
ordered by their values, we have:

ĥ(NQ) ≥ ĥ(n), ∀n ∈ [1, 2, · · · , NQ]. (45)

Meanwhile, the maximum element among the first NQ entries
of H is recorded as:

h(n∗) = max
∀n∈[1,2,··· ,NQ]

{h(n)}. (46)

Obviously, we have 1 ≤ (n∗) ≤ NQ. According to (46), the
value of h(n∗) is at least larger than NQ elements of H. Since
the 1− ϵ quantile of h can be regarded as the NQ-th largest
element in H, we must have:

h(n∗) ≥ Qω
1−ϵ(h(x,ω)). (47)

Based on the above discussion, we have:

Pω
(
Q̂1−ϵ(x) + ρ ≥ Qω

1−ϵ(h(x,ω))
)

= Pω
(
ĥ(NQ) + ρ ≥ Qω

1−ϵ(h(x,ω))
)
←− Substitute (44)

≥ Pω
(
ĥ(NQ) + ρ ≥ h(n∗)

)
←− Substitute (47)

≥ Pω
(
ĥ(n∗) + ρ ≥ h(n∗)

)
←− Substitute (45)

≥ 1− α←− Substitute (42). (48)

This proves Proposition 3.

APPENDIX D

1) Average utilization rates: The utilization rate of the total
available DG, i.e., λAvg, is defined as follows:

λAvg =
λ⊺GDG

1⊺GDG , (49)

where the numerator and denominator represent the total used
DG and total available DG, respectively. Since the available
DG, i.e., GDG is uncertain according to (2), the value of λAvg is
also uncertain. Thus, it is hard to evaluate the DG consumption
level based on this uncertain λAvg. To address this issue, we
use the expectation of λAvg to represent the DG consumption

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3223764

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidade de Macau. Downloaded on November 22,2022 at 07:42:11 UTC from IEEE Xplore.  Restrictions apply. 



14

level. This expectation is the average utilization rate of DG in
Figs. 7-15. It can be calculated based on the historical samples
of uncertainties:

E(λAvg) =
1

|N |
∑

∀n∈N

λ⊺ĜDG
n

1⊺ĜDG
n

, (50)

where ĜDG
n is defined as:

ĜDG
n = G

DG ∗ (1+ ωn), ∀n ∈ N . (51)

In our case study, once the JCC-OPF is solved, we can obtain
the optimal λ. By substituting this optimal λ to (50), the
average utilization rate of DG, i.e., E(λAvg) can be calculated.

2) Violation probabilities: The violation probabilities in our
case study are calculated based on Monte Carlo simulations.
Specifically, once the JCC-OPF is solved, we can get the op-
timal decision x. Based on the optimal decision and historical
samples of uncertainty ω, we can construct multiple pairs, i.e.,
{(x,ωn)}∀n∈N . By giving these pairs to Pandapower [53], we
can calculate the corresponding realizations of bus voltages
and branch currents and judge whether the decision x violates
constraints under different ωn. Then, the violation probability
(recorded as PVio) can be calculated by:

PVio =
NVio(x)

|N | × 100%, (52)

where NVio(x) is the number of ωn that makes the decision
x violate constraints; |N | is the total number of ωn.
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