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Abstract—Heating, ventilation, and air conditioning (HVAC)
systems are well proved to be capable to provide operating
reserve for power systems. As a type of large-capacity and
energy-efficient HVAC system (up to 100 MW), district cooling
system (DCS) is emerging in modern cities and has huge
potential to be regulated as a flexible load. However, strategically
controlling a DCS to provide flexibility is challenging, because one
DCS services multiple buildings with complex thermal dynamics
and uncertain cooling demands. Improper control may lead to
significant thermal discomfort and even deteriorate the power
system’s operation security. To address the above issues, we
propose a model-free control strategy based on the deep rein-
forcement learning (DRL) without the requirement of accurate
system model and uncertainty distribution. To avoid damaging
“trial & error” actions that may violate the system’s operation
security during the training process, we further propose a safe
layer combined to the DRL to guarantee the satisfaction of
critical constraints, forming a safe-DRL scheme. Moreover, after
providing operating reserve, DCS increases power and tries to
recover all the buildings’ temperature back to set values, which
may probably cause an instantaneous peak-power rebound and
bring a secondary impact on power systems. Therefore, we design
a self-adaption reward function within the proposed safe-DRL
scheme to constrain the peak-power effectively. Numerical studies
based on a realistic DCS demonstrate the effectiveness of the
proposed methods.

Index Terms—District cooling system, operating reserve,
model-free control, safe deep reinforcement learning.

I. INTRODUCTION

A. Background

THE increasing intermittent renewable energy resources
bring more uncertainties to the generation-side, and scale

up the demands for operating reserve services in modern power
systems [1]. Traditionally, the service is majorly provided by
thermal or gas generating units, which are carbon-intensive
and being phased out [2]. With the development of Internet of
Things technologies, active control of demand-side resources
has emerged as an alternative solution to provide operating
reserve by curtailing or transferring power consumption [3].
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The heating, ventilation, and air conditioning (HVAC) system
is an ideal resource, because it can shift its power consumption
flexibly while assuring the comfortable indoor temperature by
utilizing the building’s inherent thermal inertia [4]. Besides,
HVAC has large regulation capacity as it accounts for over
40% of power consumption in modern cities [5].

Compared with a common household HVAC system, the
district cooling system (DCS) is one type of HVAC with larger
capacity and higher efficiency, and thus DCS is emerging and
being developed in many cities [6]. As shown in Fig. 1, DCS is
composed of one energy station and some pipelines to produce
chilled water for multiple buildings [7]. Generally, one DCS’s
capacity can be up to 100 MW, which is more than 10,000
times of a household HVAC [8]. Therefore, DCS has huge reg-
ulation potential to provide operating reserve, which, however,
is only studied by few published papers. For example, Lo et
al. [9] use least squares regression to optimize the day-ahead
power dispatch for a large cooling system to perform demand
response. Cox et al. [7] and Chen et al. [10] design day-ahead
power scheduling strategies for DCS to minimize electricity
costs with time-of-use pricing. Tang et al. [11] propose a direct
load control strategy for a centralized AC system for requests
of smart grids. The chillers are assumed to be operated in
the on-off mode. All of the aforementioned studies focus on
the day-ahead or hour-ahead control while ignore the real-
time uncertainties in cooling demands. Besides, the operation
mode of chillers is usually continuous so that assuming it to be
on-off mode may not fully utilize DCS’s regulation capacity.
To fill this research gap, this study focuses on the real-time
control of a DCS to provide operating reserve subject to the
comfortable temperature constraint in each building. In most
electricity markets, the start time for resources (i.e, DCS) to
provide operating reserve is uncertain, while the time interval
for operating reserve is fixed (e.g., 10 minutes in PJM [12],
15∼30 minutes in China [13]). As illustrated by the load
curve in Fig. 1, there are two control stages for a DCS to
provide operating reserve:

1) In the power reduction stage, the controller cuts down
the DCS operating power following the instruction from
the power system operator. In the meantime, it also
tries to fulfill the temperature requests of heterogeneous
buildings, when the cooling supply from DCS gets
decreased as a result of power reduction.

2) In the power recovery stage, the DCS stops providing
reserve and begins to restore all the buildings’ indoor
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Fig. 1: The supply methods and scale of the DCS.

temperature back to set values by increasing its cooling
supply. During this stage, the DCS shall recover its
power consumption smoothly to avoid the peak-power
rebound that may cause a secondary impact on the power
system, which has just returned to the stable state.

The above two-stage control of DCS is quite challenging
because of both the system complexity and cooling demand
uncertainty, detailed as follows:

Complexity: The power consumption of a DCS is usually ad-
justed automatically according to its operation state, so that we
cannot control the power directly to provide operating reserve
like other demand-side resources [14]. Instead, the mass flow
in pipelines is regulated to adjust the DCS’s operating power
indirectly [15], which can achieve faster-response effects than
regulating the set temperature [16]. However, describing the
relationship between the mass flow and operating power
needs an accurate thermal dynamic model. This is challenging
because the thermal dynamics of a DCS, including cooling
power generation, transportation and consumption, is usually
quite complex [6]. Furthermore, a DCS is a large networked
system whose dynamic parameters are hard and expensive
to measure. Obtaining an accurate model that is completely
in sync with the real system is nontrivial in practice [17].
Therefore, traditional model-based control methods for HVAC
systems are hard to be used in DCS [18].

Uncertainty: The DCS’s power consumption and buildings’
indoor temperatures are related to the ambient temperature
and indoor human behaviors [19]. Higher ambient temperature
and more indoor human activities call for more cooling
supply and higher power consumption. However, the indoor
human behaviors are stochastic and hard to accurately predict
[5]. The ambient temperature can bring different influence
to heterogeneous buildings. As a result, it is nontrivial to
control a DCS subject to heterogeneous indoor temperature
constraints in multiple buildings, especially when the DCS
power consumption is cut down to provide operating reserve.

B. Literature Reviews

In recent years, some researchers adopt model predictive
control (MPC) method for regulating DCS to achieve the
cost reduction in energy systems [20]. However, MPC usually
requires a reliable dynamic model of the system, which is often
unavailable in practice [21]. Furthermore, when the system
model is too complex, MPC can be quite computationally

expensive and may fail to work in real-time control scenarios.
Mixed-integer linear programming (MILP) has also been used
to the complex system scheduling problems [22], [23]. Unfor-
tunately, at each step, optimization methods need to recalculate
from the beginning, resulting in too large calculation cost to
be applied in real-time control. Moreover, the execution time
of MILP increases exponentially according to the problem
dimensions and cannot solve complex issues. Another com-
monly used control method is heuristic algorithm. including
genetic algorithm (GA), particle swarm optimization (PSO),
ants colony optimization (ACO), etc. Stoppato et al. [24] com-
bine heuristic algorithms to obtain system’s optimal operation,
while the convergence of heuristic algorithms cannot be proved
mathematically and is less robust.

Compared with the aforementioned control methods, deep
reinforcement learning (DRL) has become increasingly pop-
ular to handle model-free and high dimensional decision-
making problems [25]. DRL has been proved to be more robust
with stable convergence results to effectively handle uncer-
tainties of systems through the prediction in neural networks.
Some researchers have adopted DRL to control traditional
HVACs. For instance, Du et al. [26] use DRL to control
residential HVACs as to respond dynamic electricity prices. Xu
et al. [27] adopt DRL to schedule home energy consumption
considering uncertain PV generation. Liang et al. [28] present
a DRL-based control strategy to minimize both the HVAC’s
energy consumption and user’s thermal discomfort. Ruelens et
al. [29] propose a DRL-based direct control method of HVAC
to provide ancillary services. Zhang et al. [30] utilize DRL
for cost-effective control of a HVAC in commercial buildings.
However, to the best of our knowledge, published papers have
not studied DRL-based control for DCS to provide operating
reserve for power systems.

Generally, a DRL-based controller has to be trained through
lots of “trail-and-errors” before being intelligent [31]. It means
some “bad” decisions may be made during the training pro-
cess, part of which may cause constraint violations. However,
in power systems, some critical constraint violations can cause
damaging results [32]. For example, if a DCS fails to provide
sufficient operating reserve as it promised to the system
operator, the power system may face the stability problem.
To address this challenge from the constraint safety in power
systems, the safe-DRL framework is needed to ensure the
satisfaction of critical constraints during the training process.
Considering that safe-DRL is an emerging concept in the
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application in power systems, there are little research to com-
bine HVAC or DCS with safe-DRL. Some published studies
propose safe-DRL frameworks for voltage control problems
[33]–[36], emergency load-shedding control problems [37]–
[39] and demand-side resource scheduling problems (e.g., EV,
building’s equipment) [40]–[42]. However, DCS is different
from EVs and household HVACs due to its complex thermal
dynamic process and uncertainties. Thus, the above methods
can not be adopted directly in this paper.

C. Contributions

In this paper, we propose a safe-DRL control strategy
for DCS to provide operating reserve while satisfying major
critical constraints. This paper advances the relevant published
literature in the following aspects:

1) The DCS control problem is developed as a Markov
Decision Process (MDP) mathematically to provide op-
erating reserve. The designed reward function of DRL
aims to achieve minimum impacts on buildings’ thermal
comfort when providing the required operating reserve.
Besides, the proposed iteration algorithm does not need
the accurate system model of DCS nor the distribution
of uncertainties, which can address challenges from both
the system complexity and uncertainty.

2) A novel safe-DRL framework is proposed for con-
straint assurance, where a safe layer is designed on the
top of traditional DRL algorithm. The proposed safe
layer avoids critical power constraint violations to pro-
tect power systems from undesirable “trial-and-errors”,
through fine tuning possible unsafe control signals into
safe ones during the training process.

3) A self-adaption target method is proposed and designed
as the reward function in the safe-DRL framework
during the power recovery stage. The proposed method
can effectively achieve the smooth power recovery and
avoid peak-power rebound that probably brings sec-
ondary impacts to power systems.

Besides, numerical studies verify the effectiveness of our
proposed strategy, based on a real-world DCS. The analysis
shows DCSs are qualified to provide operating reserve with
mild impacts on buildings’ indoor thermal comforts, subject
to the critical power constraints.

The rest is organized as follows. Section II introduces
the physical architecture and control logic of DCS. Section
III proposes the safe-DRL framework. Numerical studies are
carried out in Section IV. Section V concludes this paper.

II. MODELLING OF THE DCS
This section establishes the DCS model as the simulated

environment to interact with the proposed DRL agent. Noted
that the only information received by the agent is the feedback
from the established environment, while not the details about
the accurate DCS model.

A. DCS Framework

The schematic diagram of a DCS is shown in Fig. 2, in
which blue lines represent the chilled water (or cooling wind)

to supply thermal energies for buildings; red lines are the
returned warm water (or warm wind). Its heat transmission
process includes three isolated loops:

In the first water loop, chillers produce chilled water with
a set temperature T ch,s, which is transported through pipelines
to distributed buildings to supply cooling demands. The total
mass flow mch

t is separated to different buildings by their
independent two-port valves, which determine each building’s
own mass flow rate mI

i,t [43]. After the heat exchange process,
the chilled water in pipelines becomes warm with temperature
T ch,r
t and then is pumped back to chillers. The decoupler

between the supply and return water balances pressure when
the mass flow rate changes.

In the second water loop (i.e., water cycle in buildings),
the water temperature T II,s

i,t in buildings is cooled down by the
chilled water in the first water loop through heat exchangers.
Then the cool water transfers its thermal energy to the air
in Air Handle Units (AHUs) to form cooling winds. The
temperature of return water T II,r

i,t reflects fluctuating cooling
demands in buildings and further influences chillers’ power
consumption automatically.

In the air loop, AHUs blow cooling winds with the tem-
perature Tw

i,t into each room, which can further influence the
indoor temperature TA

i,t and refresh the indoor air.
Note that the aforementioned three loops are mutually

independent while interactional. Specifically, the total power
consumption of a DCS majorly comes from chillers in the first
water loop, whose operations are automatically and indirectly
adjusted based on the buildings’ cooling demands in the third
loop. Therefore, it is significant for the DCS control to find
the relationship between these loops.

B. Modelling of Key Components

1) Chillers: Chillers consume most electricity in DCS.
Their power consumption can be calculated based on the
energy and mass balance, as follows:

P ch
t =

Qch
t

COP
, ∀t, (1)

where P ch
t is chillers’ electrical power at time t, in kW; Qch

t is
the cooling power, in kW; COP denotes chiller’s coefficient of
performance. Generally, Qch

t is determined by chillers’ varying
return water temperature T ch,r

t , in ◦C, and instantaneous mass
flow rate mch

t , in kg/s, as follows:

Qch
t = mch

t c
w(T ch,r

t − T ch,s), ∀t, (2)

where cw is the specific heat capacity of water, in kJ/(kg·◦C).
The set temperature of supply chilled water is represented by
T ch,s, which is usually a designed constant [44]. Therefore,
controlling the mass flow rate mch

t can influence the electrical
power P ch

t effectively. Further, we can rewrite T ch,r
t and mch

t

according to the mass balance as:

mch
t = mdec

t +
∑

i∈I
mI
i,t, ∀t, (3)

T ch,r
t =

mdec
t cwT dec

t +
∑
i∈Im

I
i,tc

wT I,r
i,t

mch
t c

w
, ∀t, (4)
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Fig. 2: Schematic diagram of a DCS.

where set I denotes the set of terminal buildings; mI
i,t and

T I,r
i,t are each buildings’ mass flow rate and return water

temperature in first water loop, respectively; mdec
t and T dec

t

are the mass flow rate and return water temperature of the
decoupler, respectively. Eqs. (3)-(4) show the mass flow and
energy balances between chillers and buildings.

2) Heat exchangers: Heat exchangers transfer cooling sup-
ply from the first water loop to the second water loop.
Considering the heat loss in pipelines, each building’s actual
supply water temperature can be calculated by [45]:

T I,s
i,t = T out

t + ηpipe(T ch,s − T out
t ), ∀i ∈ I,∀t, (5)

where ηpipe is the heat transfer coefficient of supply pipelines;
T out
t is the ambient temperature; T I,s

i,t is the supply chilled
water temperature for building i. Further, the corresponding
exchanging heat in building i, QHE

i,t in kW, can be given by:

QHE
i,t = mII

i,tc
w(T II,r

i,t − T
II,s
i,t )

= ηI
im

I
i,tc

w(T I,r
i,t − T

I,s
i,t), ∀i ∈ I,∀t, (6)

where ηI
i indicates the transfer efficiency of first water loop to

second water loop; mI
i,t and mII

i,t are the mass flow rate of two
sides, respectively. Similarly, T I,r

i,t, T
I,s
i,t and T II,r

i,t , T
II,s
i,t are the

return and supply water temperature of each side, respectively.
In addition, QHE

i,t is determined by the performance of the heat
exchanger, which can be calculated by [46]:

QHE
i,t

kHE
i

=

∫ FHE

0

∆Ti,tdFi ≈ FHE
i ∆Tmean

i,t , ∀i ∈ I,∀t, (7)

where kHE
i is heat exchangers’ transfer coefficient, in

kW/(m2·◦C); FHE
i is the surface area, in m2; Symbol ∆Tmean

i,t

is defined as the mean difference between the water’s temper-
ature of two sides, which is a function formulated as:

∆Tmean
i,t =

(T II,r
i,t − T

I,s
i,t)− (T II,s

i,t − T
I,r
i,t)

ln((T II,r
i,t − T

I,s
i,t)/(T

II,s
i,t − T

I,r
i,t))

, ∀i ∈ I,∀t. (8)

The above Eqs. (6)-(8) determine the dynamic exchanging heat
in each building i between the first and second water loops.

3) Buildings: AHU transfers the heat from the second water
loop to the third air loop by blowing cooling wind whose
energy balance is give as:

mw
i,tc

A(TA
i,t − Tw

i,t) = ηII
i m

II
i,tc

w(T II,r
i,t − T

II,s
i,t ),∀i ∈ I,∀t, (9)

Tw
i,t =

1

2
(1− αi)(T II,s

i,t + T II,r
i,t ) + αiT

out
t , ∀i ∈ I,∀t, (10)

where cA,mw
i,t are air’s specific heat capacity and wind’s mass

flow rate; ηII
i is the exchanging heat efficiency of sencond

water loop to AHU; TA
i,t, T

out are the indoor and ambient
temperature, respectively; Tw

i,t represents the temperature of
the cooling air out from AHU, mixing the outdoor fresh
air with proportion αi. Then the indoor thermal dynamic is
described as [47]:

cAρAVi
dTA

i,t

dt
= Qloss

i,t −QDCS
i,t , ∀i ∈ I,∀t, (11)

where ρA is the density of the air, in kg/m3; Vi is the space
volume of the ith building, in m3; Qloss

i,t is the ith building’s
heat loss because of its heat exchange with the ambient
environment and QDCS

i,t is its cooling gain from DCS, which
are given as:

QDCS
i,t = mw

i,tc
A(TA

i,t − Tw
i,t), ∀i ∈ I,∀t, (12)

Qloss
i,t = UO-A

i AS
i (T

out
t − TA

i,t) + ζi,t, ∀i ∈ I,∀t, (13)

where UO-A
i is the heat transfer coefficient, in kW/(m2·◦C);

AS
i is the surface area of the ith building, in m2; ζi,t is

the heat load from indoor sources (e.g., stochastic human
behaviors and electric equipment), in kW. Eqs. (11)-(13) give
the temperature dynamic in buildings. If ∆TA

i,t is used to
represent the temperature fluctuation in a stable operating state
(TA
i,t0
,mw

i,t0
, Tw
i,t0

), then the temperature dynamic’s first-order
Taylor series expression can be expressed as:

cAρAVi
d∆TA

i,t

dt
= −(mw

i,t0c
A + UO-A

i AS
i )∆T

A
i,t +mw

i,t0c
A∆Tw

i,t

+ cA(Tw
i,t0 − T

A
i,t0)∆mw

i,t + UO-A
i AS

i∆T
out
t

+ ∆ζi,t, ∀i ∈ I,∀t, (14)

where ∆Tw
i,t, ∆mw

i,t, ∆T out
t and ∆ζi,t are the changes in the

corresponding four variables. Then, the Laplace transformation
of Eq. (14) can be obtained as following:

(K1s+K2 +K4)TA
i (s)

=K2T
w
i (s) +K3m

w
i (s) +K4T

out(s) + ζi(s),∀i ∈ I, (15)

where K1 = cAρAVi, K2 = mw
i,t0
cA, K3 = cA(Tw

i,t0
− TA

i,t0
)

and K4 = UO-A
i AS

i . Therefore, the temperature dynamic in
each building is an inertial process with inertia time constant
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K1/(K2+K4), which is mainly determined by each building’s
inherent characteristics.

The above models from Eq. (1) to Eq. (15) describe the
whole thermal dynamics in a DCS. In summary, a DCS
provides cooling supply to multiple buildings through two
water loops and one air loop to transmit thermal energies.

Remark 1. The chillers’ cooling power is not only determined
by the mass flow rate mch

t but also the uncertain return water
temperature T ch,r

t . The later is further influenced by stochastic
ambient temperature T out and heat load ζi of buildings in
Eq. (13). Besides, the accurate thermal model parameters in
three loops are unknown and difficult to obtain in practice,
which makes the conventional model-based control strategy
infeasible for a DCS. To deal with these challenges, a model-
free DRL method is proposed in the following Section III.

III. DCS CONTROL BASED ON SAFE DEEP
REINFORCEMENT LEARNING

As shown in Fig. 3, when the DCS receives signals to
provide operating reserve, its total mass flow, i.e., the sum
of all the buildings’ mass flows, should be regulated to
satisfy the power constraint. Given the total mass flow, the
second problem is to allocate the mass flow among different
buildings. An ideal control strategy shall properly allocate
these mass flows to make heterogeneous buildings have similar
temperature deviations, so that all the buildings’ comforts can
be guaranteed to the most extent and their thermal inertia
can be fully utilized. Therefore, the power requirement from
the power system and the temperature comfort requirements
from buildings should be both considered in the DCS control
problem when providing operating reserve.

A. Formulation of the DCS Control Problem

The DCS control problem is a typical sequential decision-
making problem that can be described as a MDP [48],
which aims to minimize temperature impacts on buildings by
controlling mass flows continuously. Considering there is a
critical power constraint during the control process, the studied
problem needs to be formulated as a Constrained Markov
Decision Process (CMDP) [49].

In the CMDP framework, a centralized smart controller,
called agent, is designed to send each building signals to
control its mass flow rate mI

i,t. When a DCS provides op-
erating reserve during the period T = [t0, t1], the DCS is

DRL Agent 𝒔 DCS operating state ∆𝒎 Mass flow regulation

𝒔0 𝒔1

∆𝒎0

𝒔𝑛−1 𝒔𝑛

DCS provides operating reserve

𝑡0 𝑡1 𝑡𝑛−1 𝑡𝑛

∆𝒎1

𝒓0 𝒓1

∆𝒎𝑛−1

𝒓𝑛−1

Collect each step’s reward 𝒓 to train the agent to become a 

well-trained agent based on the proposed algorithm.

Fig. 4: Interactions between the agent and the DCS.

regarded as an environment whose real-time operation state st
at time slot t ∈ T is observed by the agent. Then according
to the information in st, the agent makes one decision for
DCS to execute action at , which means there is a complete
trajectory τ = {st0 ,at0+1, st0+1, ...,at1 , st1} to describe the
control process. Here, both the state st and action at are
multi-dimensional vectors rather than a scalar. The probability
from the state st to st+1 after taking action at is defined by
a transition function P (st+1|st,at), which is not necessary
(assumed unknown) in model-free methods.

In DCS control process, its power consumption and build-
ings’ indoor temperature are main considerations. The temper-
ature deviation ∆Ti,t = TA

i,t − T set
i,t ,∀i ∈ I, t ∈ T , is defined

as the temperature comfort indicator, in which T set
i,t is the set

temperature. Thus, the state and the action are defined by:

st =
[
∆Pt,m

I
i,t, T

I,r
i,t,∆Ti,t|i ∈ I

]ᵀ ∈ S, ∀t ∈ T , (16)

at =
[
∆mI

1,t,∆m
I
2,t, ...,∆m

I
|I|,t

]ᵀ
∈ A, ∀t ∈ T , (17)

where ∆Pt equals to the gap between the actual power P ch
t

and required power cap P cap of power systems. The scale of
the state space S and action space A are |S| = 3|I| + 1
and |A| = |I|, respectively. As shown in Fig. 4, the DRL
agent gives its control signal ∆m at each time slot t during
operating reserve. According to the past experiences, the agent
updates its policy with the proposed algorithm to become more
intelligent. Because the mass flow can be regulated by valves
continuously, the action space is a continuous space and ∆mI

i,t

is a continuous variable. The positive (or negative) ∆mI
i,t

means to increase (or decrease) the mass flow rate, in which
there are upper and lower limits mI

i, m
I
i in a real DCS. Thus,

the maximum value of action is constrained by |∆mi,t| ≤ mI
i.

An arbitrary mapping from the state space to the action
space π : S → A is called a policy. Essentially, the agent’s
task is to find an optimal policy that will be used as a guide
for future online controlling. In order to evaluate a policy’s
performance, rt+1 is defined as reward for the action at in
one step, which is formulated as:

rt+1 = −θrEi∈I [|∆Ti,t+1|]− σ2
i∈I [∆Ti,t+1], ∀t ∈ T . (18)

Eq. (18) includes two parts: the average and variance of all
the buildings’ temperature deviation at next time t + 1. The
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former item Ei∈I [|∆Ti,t+1|] is the average temperature of
all the buildings’ indoor temperature deviations from their
corresponding set values. A smaller average value means
a less temperature influences to buildings. The later item
σ2
i∈I [∆Ti,t+1] is the variance of all the buildings’ temperature

deviations, where a smaller variance means less difference of
the influences among different buildings. Parameter θr is the
weight factor to determine the importance of the two parts.

Further, compared with the immediate reward rt, the return
Gt is defined as the accumulated reward in the future, which
considers not only the immediate reward but also the expected
influence to future rewards caused by the current action. The
total discounted reward at time slot t is expressed as:

Gt = rt+1 + γrt+2 + ... =
∑t1−t

τ=0
γτrt+τ+1, ∀t ∈ T , (19)

where γ ∈ [0, 1] is a discount factor to represent the weight of
the influence to future rewards [50]. For instance, when γ = 1,
the agent considers the immediate and future rewards with the
same importance. By contrary, when γ = 0, the agent only
considers the current reward and Gt = rt Then, an action-
value function Qπ(st,at) is defined as the expected return
from state st, taking action at and following policy π:

Qπ(st,at) = Eπ[Gt|st,at], ∀t ∈ T , (20)

where the optimal action-value function Q∗(st,at) means
the maximum action-value over all policies maxπ Q

π(st,at).
According to the theorem in MDP [31], optimal policy π∗ is
defined to satisfy Qπ

∗
(st,at) = Q∗(st,at),∀t. Therefore, the

agent’s objective is to maximize the expected return Jπ:

max
π

Jπ = Est∼S,at∼π[Gt] = Est∼S [Qπ(st, π(st))]. (21)

However, different with the conventional policy optimiza-
tion problem, there is a critical power constraint for a DCS
during the power reduction stage and formulated as:

P ch
t ≤ P cap, ∀t ∈ T , (22)

where P cap is the required power cap from the power system
operator to constrain DCS’s operating power1. If it is violated,
the DCS may be heavily penalized by the power system
operator. Thus, Eq. (22) turns the DCS control problem from
a traditional MDP into a CMDP.

B. Policy Gradient Algorithm

To solve the optimal policy π∗ in Eq. (21), a safe-DRL
algorithm is proposed as shown in Fig. 5, which combines the
actor-critic framework and deep Q-learning. Two neural net-
works are adopted to represent the action-value function Q and
policy π, with parameters θQ, θπ , respectively. The network to
approximate Q value is called critic network, and another one
that outputs actions is called actor network. In Fig. 5, the agent
firstly interacts with the DCS environment to obtain transitions
(st,at, rt, st+1), and collects all transitions into an experience
reply buffer R. Secondly, the agent randomly sample a mini-
batch data from R to update two networks. Finally, the DCS

1Power cap is determined by the regulation capacity that the DCS offered
to the electrical market ahead of one day [51].
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Fig. 5: Scheme of the safe-DRL algorithm.

receives an action that is produced by the actor network π(st)
and further fine tuned by the safe layer. The convergence of
the DRL algorithm has been proved mathematically [52].

Using the experience reply buffer R, randomly sampled data
keeps weak correlationship with each other, which effectively
avoids over-fitting of the two networks. The update rule for
actor network θπ is given in its gradient direction as [31]:

5θπ Jπ = E[5aQ(s, π(s))5θπ π(s)], (23)

where the gradient of Q needs to be estimated through the
critic network. Moreover, because the sampled transitions from
R are all guided by policy π, the Monte-Carlo approach is
adopted to give an un-biased estimate of Eq. (23) as:

5θπ Jπ ≈
1

K

∑K

k=1
5aQ(sk, π(sk))5θπ π(sk), (24)

where k is the index of samples; K is the size of the sampled
mini-batch data set K. For the critic network θQ, the mean
squared error (MSE) is used as the loss function:

L =
1

K

∑K

k=1
[yk −Q(sk,ak)]2, (25)

where yk is the target value of Q(sk,ak) and needs to be
estimated. To stabilize the training process and guarantee
the convergence, the target yk should not change frequently.
According to the Bellman Expectation Equation of Eq. (20),
two target networks (Q′, π′), copies of ordinary networks
(Q, π), are designed to calculate yk as:

Qπ(st,at) = E[rt + γQπ(st+1,at+1)], ∀t ∈ T , (26)
yk = rk +Q′(sk+1, π

′(sk+1)), ∀k ∈ K. (27)

To be more stabilized, the target networks are updated follow-
ing the running average method, which are given by:

θQ
′
← τθQ + (1− τ)θQ

′
, (28)

θπ
′
← τθπ + (1− τ)θπ

′
, (29)

where τ is the smooth factor, 0 ≤ τ � 1. Finally, to improve
the efficiency of the exploration, an independent noise ξt is
added to each action subject to the Gaussian distribution ξ ∼
N(0, σ2). The proposed algorithm is summarized in Table I,
where the safe layer showed as row 06 will be described in
detail in the next subsection.
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TABLE I: Safe-DRL algorithm

01 Initialize the random process ξ, the experience reply buffer
R and the actor, critic networks Q(s,a), π(s) with weights
θQ, θπ , respectively. Initialize corresponding two target
networks Q′, π′ with weights θQ

′
← θQ, θπ

′
← θπ .

02 For episode = 1 : 1 : M do
03 Receive initial observation state st0 .
04 For t = 1 : 1 : T do
05 Select DCSs’ control action at0+t = π(st0+t)+ξt0+t.
06 fine tune at0+t by the safe layer.
07 Execute the action at0+t, then obtain the reward rt0+t

and the next state st0+t+1.
08 Collect the transition (st0+t,at0+t, rt0+t, st0+t+1)

to R, and randomly sample a mini-batch data from R.
09 Update the actor and critic networks by (27) and (25).
10 Update the two target networks by (28)-(29).
11 Endfor
12 Endfor

C. Constrained Policy by the Safe Layer

As shown in step 06 of Table I, the action at needs to be fine
tuned by the safe layer before being executed, which aims to
guarantee the critical constraint of the operating power in Eq.
(22). The proposed safe layer achieves the required power cap
to assure the high-quality performance in the operating reserve,
which effectively makes the DRL agent’s control results more
reliable in practice.

In each time step t ∈ T , according to the output action
at = ∆mI

t, the next mass flow rate of buildings mI
t+1 can

be obtained as:

mI
t+1 = mI

t + ∆mI
t, ∀t ∈ T . (30)

Thus, based on energy balance Eqs. (1)-(2), the power con-
sumption at the next state is calculated as:

P ch
t+1 =

∑
i∈I

mI
i,t+1Θt, ∀t ∈ T , (31)

where Θt = 1
COP [cw(T ch,r

t − T ch,s)] is the known parameter
related with the return water temperature. Then, if the power
consumption satisfies the constraint P ch

t+1 ≤ P cap, the action
∆mI

t will be executed directly; Otherwise, the action ∆mI
t

should be optimized to decrease the operating power.
To address this issue, we propose the following linear

mapping rule to adjust ∆mI
t as:

∆m̃I
t = ∆mI

t + µt∆mI
t + υtm

I
t, ∀t ∈ T , (32)

where µt and υt are the correction coefficients for adjusting
the action ∆mI

t, and µt, υt ≤ 0; ∆m̃I
t is the updated action

from the original agent’s output and will finally be executed in
DCS. When µt and υt are close to 0, the last two correction
terms in Eq. (32) will take small function, i.e., the original
agent’s action ∆mI

t will not be adjusted too much by the safe
layer. By contrast, when µt and υt are negative and far from 0,
the original agent’s action ∆mI

t will be adjusted significantly.
In other words, the safe layer is not only a simple saturation
function, but also needs to train the agent to converge. If the
decision from the agent ∆mI

t is changed quite a lot by the safe
layer, which probably decreases the agent’s training efficiency
and even leads to the failure of its convergence. Therefore, the
coefficients µt and υt are expected to be large and close to 0.

TABLE II: Safe layer method

01 Obtain the next mass flow rate mI
t+1 and operating power

P ch
t+1 by (30), (31).

02 If P ch
t+1 ≤ P cap then: execute ∆mI

t directly;
03 Else
04 Solve the optimal coefficients µt and υt by (33)-(36);
05 Optimize the next mass flow rate ∆mI

t using (32);
06 Execute the fine tuned mass flow rate ∆m̃I

t.
06 End

On this basis, the two coefficients µt and υt can be optimized
by following linear programming:

max
µt,υt

µt + υt, (33)

s.t.:
∑

i∈I
(µt∆m

I
i,t + υtm

I
i,t)Θt ≤ P cap, ∀t ∈ T , (34)

mI
i ≤ µt∆mI

i,t + υtm
I
i,t ≤ mI

i, ∀i ∈ I,∀t ∈ T , (35)

µt, υt,≤ 0, ∀t ∈ T , (36)

where the objective in Eq. (33) represents the minimum
changes on the original agent’s action ∆mI

t. The constraint
in Eq. (34) is to satisfy the required power cap from power
systems. Inequalities (35)-(36) define the domain of param-
eters µt, υt ≤ 0 and mI

i ≤ mI
i,t+1 ≤ mI

i. The calculation
process of the safe layer is illustrated in Table II to achieve
the fine tuning of the “unsafe” action.

Remark 2. The mass flow rate is fine tuned by a mapping rule
in Eq. (32) to satisfy the power constraint, which maintains all
the buildings’ relative relation. In this way, the influence to the
agent’s training process is linear and feasible to learn, which
guarantees the convergence of the agent’s policy iteration.

D. Self-adaptive Target Method

After providing operating reserve, DCS stops following
power systems’ regulation signals and enters the power recov-
ery stage. Thus the power cap constraint in Eq. (22) is relaxed
and the DCS tends to recover buildings’ comfort temperature
as soon as possible. However, a too rapid recovery of the
temperature may cause an instantaneous increase in the power
consumption, called “power rebound”. It may lead to a new
power peak and cause stability problems for power systems.
In some extreme cases, the large load current brought by the
power rebound could cause the melting of overhead lines,
which damages power system security considerably [53]. To
avoid the “unsafe” power rebound, we further propose a self-
adaption target method combined to the proposed safe-DRL
scheme to achieve a smooth recovery, as follows:

rt = −Ei∼I [|∆Ti,t+1 − ϕi,t+1|], ∀t ∈ [t1, t2], (37)

where rt is the reward of the indoor temperature in the
recovery stage; ϕi,t is the self-adaptive factor; t1 is the end
time of the power reduction stage and also the beginning
time of the power recovery stage; t2 is the required time for
recovering the indoor temperature to the set value.

The reward rt in Eq. (37) is different from the definition
during the reduction stage in Eq. (18). Because Eq. (37)
considers not only the buildings’ set values, but also the
self-adaptive factor ϕi,t to design a expected temperature-
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Fig. 6: Step-by-step calculation process.

decreasing trend. In this way, the sharp increase of the DCS’s
operating power can be alleviated. We propose the following
configuration method for the self-adaptive factor2:

ϕi,t =
∆Ti,t1

1 + eλ[
t−t1
t2−t1

− 1
2 ]
, ∀i ∈ I,∀t ∈ [t1, t2], (38)

where λ is determined according to the required recovery
extent of the indoor temperature at time t2. For example, when
λ is set as 6, the recovery extent of the indoor temperature
can reach 95% of ∆Ti,t1 at time t2. Therefore, we can set the
values of λ and t2 to obtain the self-adaptive factor ϕi,t.

Moreover, in order to constrain the increased operating
power during the recovery stage strictly, we also design a safe
layer for the agent, similar with that during the reduction stage
in Eq. (27)-(33). The difference is that the P cap in Eq. (31) is
replaced by the power consumption P ch

t0 at time t0, given by:

P ch
t ≤ P

ch
= P ch

t0 , ∀t ∈ [t1, t2], (39)

where P
ch

is the upper limit of the operating power during the
recovery stage. The training process of the safe-DRL agent
is organized in Fig. 6 to show the step-by-step calculation
process. It includes 5 steps, where the first step is to develop
the environment based on Eqs. (2)-(13) and initialize the
policy; the second step is to select an action according to
the policy; the third step is to tune the “unsafe” action by the
proposed safe layer as Table II; the fourth step is to update
the policy according to samples.

2The configuration principle is to make the indoor temperature recover to
50% of ∆Ti,t1 when the time goes halfway, i.e., t = t1 + 1

2
(t2 − t1).
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Fig. 7: The ambient temperature and buildings’ heat loads.

Remark 3. The proposed self-adaptive target method in Eq.
(37) can regulate the DCS operating power to avoid the
power rebound in the power recovery stage and minimize the
buildings’ comfort impacts.

IV. CASE STUDIES

A. Test System

The test system is modelled based on a realistic DCS in
Hengqin, China, following its technical guidelines (the 4th
Edition) [54]. The total installed cooling capacity in the energy
station is 41,000 RT (≈144 MW) with COP=5.5. The designed
supply and return water temperature in two loops at time t=0
is T ch,s = 3 ◦C, T I,r

i,0 = 12 ◦C, T II,s
i,0 = 13 ◦C, T II,r

i,0 = 18
◦C, respectively. In addition, based on the national standard in
China (JGJ 134-2010, GB 12021.3-2010, GB 31349-2014), the
following parameters are designed as kHE

i = 4.5 kW/(m2·◦C),
UO-A = 0.0036 kW/(m2·◦C), cw = 4.2 kJ/(kg·◦C), cA = 1.005
kJ/(kg·◦C) and ρA = 1.205 kg/m3. The efficiency coefficients
of heat exchanging process between different loops are set as
ηI
i = 0.9, ηII

i = 0.9, respectively. The heat transfer coefficient
of supply water ηpipe is 0.95. The air mixing proportion is set
as αi = 0.1.

The DCS in Hengqin provides cooling services for 12
buildings. The maximum value of the mass flow rate mI

i

ranges from 600 kg/s to 1,200 kg/s in different buildings,
and the corresponding minimum value mI

i is 3% of mI
i. Each

building’s floor area AS
i and its set temperature T set

i,t are dis-
tributed in 100,000∼300,000 m2, and 20∼23 ◦C, respectively.
The maximum deviation of the required comfortable indoor
temperature is ±1 ◦C. Moreover, the ambient temperature T out

t

and each building’s heat load ζi,t adopt the realistic data in
Hengqin, from June 1, 2020 to August 31, 2020 (one typical
day’s profiles are shown in Fig. 7).

The control objective of DCS is to provide operating reserve
from 14:00pm to 14:15pm, as shown in Fig. 8.3 The black
curve is the original power consumption, and regarded as the
power baseline before regulation. The red shadow area is the
required decrease of energy consumption, and the operating
power should be lower than the power cap P cap=60 MW
during this period. In the recovery stage, the new power cap
is set as the peak power of the baseline, i.e., P

ch
= 96 MW.

3Note that these experimental settings are for illustrative purpose. In
practice, the service duration, the operating reserve period and the power
cap P cap are determined by the system operator. The effectiveness of the
proposed methodology is not affected by these parameter settings.
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Fig. 8: The original power consumption of DCS.

B. Benchmarks

To validate the superiority of the proposed safe-DRL
scheme, we implement another two centralized control meth-
ods as our benchmarks: the traditional proportional-integral
(PI) controller [55] and the DRL controller [25]. Here, the
superiority includes providing a higher-quality service and
preventing the power rebound with the minor impacts on
buildings’ temperature comforts.

In the PI method, the control signal is determined by
the feedback of both the power cap violation and indoor
temperature comfort4. The buildings’ mass flow regulation at
each time step t can be expressed as:

∆mch
t =Pch(P ch

t − P ch
t−1) + Ich(P ch

t − P cap), (40)

∆mI
i,t =

[
Pi(TA

i,t − TA
i,t−1) + Ii(TA

i,t − T set
i,t )
]

+mI
i,t−1∆mch

t /
∑

i∈I
mI
i,t−1, (41)

where Pch, Ich are parameters of the PI controller in pipelines to
follow power caps; Pi, Ii are the parameters of PI controllers in
buildings to follow set indoor temperatures. Eq. (41) means the
regulation of the total mass flow is achieved by adjusting each
building proportionally. During the power reduction stage,
parameters are set as Pch=0.2, Ich=0.02. During the power
recovery stage, the power constraint is relaxed and Pch=Ich=05.

In the traditional DRL method, it does not have the safe
layer so that the power constraint P cap is considered as a
penalty item in its reward function, which is formulated as:

rt+1 =− θrEi∈I [|∆Ti,t+1|]− σ2
i∈I [∆Ti,t+1]

− θp|P ch
t+1 − P cap|, ∀t ∈ T , (42)

where θp is the weight factor of the penalty item.

C. Training Process of the Safe-DRL Agent

The parameters of the proposed safe-DRL are designed as
Table III. The key hyper-parameters are designed based on the
experience concluded in the existing literature [56], including
the discount factor, learning rates, replay buffer capacity, etc..
The actor and critic networks are composed by one input

4A more complex version of PI controller is PID controller, in which a
D parameter is added to reflect the differential control process. We have
also tested PID controller’s performance for DCS control. However, our
experiments show that PID does not obviously outperform PI (but with a
more complex structure). Furthermore, when adopting a PID controller with
a large D parameter, there may exist a strong noise in the controlling results.
Hence, we only include PI controller in this paper to save space.

5The tuning rule is to satisfy the daily operating and maintain buildings’
comfortable set temperatures.

TABLE III: Parameters for safe-DRL and DRL methods.

Symbols Definitions Values
τ Target smooth factor 0.005
γ Discount factor 0.9
|R| Replay buffer capacity 10000
ξ Exploration noise 0.3
M Max episodes 2500
T Max step 15
K Mini batch size 200
δθQ Learning rate of critic network Q 0.001
δθπ Learning rate of actor network π 0.0001
θr Weight factor of temp deviations 0.01
θp Weight factor of power violations 0.05

layer, two hidden layers and one output layer, respectively6.
The neurons number in each hidden layer is set as 128. The
Rectified Linear Unit is used as the activation function.

The parameters in DRL (benchmark) adopt the same experi-
mental settings with safe-DRL. The simulation is implemented
by Windows system, using PyTorch in Python with an Intel
core i7 CPU @3.0 GHz and 16GB memory.

The training process is shown in Fig. 9, and the number
of training episode is 2500. Fig. 9(a) presents the reward
value for appraising the agent’s decision in each episode. It
can be seen that the rewards in safe-DRL and DRL have
oscillations at first because of the unknown knowledge about
the training environment (i.e., the DCS). With the increase
of training episodes, the rewards converge to their respective
stable values, called convergence reward. Then, both of the
two agents obtain the optimal policy in Eq. (21).

The comparison of training efficiency between the proposed
safe-DRL and the traditional DRL method is shown in Table
IV, where the efficiency indicator includes sample efficiency,
convergence time and convergence reward. Sample efficiency
is the estimated minimum number of samples to converge as
illustrated in Fig. 9(a). It can be seen that the proposed safe-
DRL needs less sampled episodes to converge, so it has higher
sample efficiency and shorter convergence time (2.9 mins).
Besides, the convergence reward of safe-DRL is larger (-30)
than that of DRL (-45), which means the safe-DRL agent can
achieve the temperature objective better than DRL.

Fig. 9(b) shows the constraint violation during the agents’
training processes, where ∆P = P ch−P cap is the power gap to
the required power cap. It can be seen that the power constraint
violation is conspicuous and even reaches to over 40MW in
DRL, which may harm the stable operation of the power
system. However, the operating power can satisfy the power
cap strictly in safe-DRL, which proves the effectiveness of
the proposed safe-layer. Besides, the operating power is quite
close to the power cap, because the agent wants to make full
use of the allowable power to decrease the indoor temperature
deviations. Thus the well-trained agent can be applied to the
online control of DCS for providing operating reserve.

D. Online Control of DCS for Providing Operating Reserve

For a random case, it is assumed that the power system has
the regulation demand at 14:00pm, and sends the regulation

6Layer number adopts existing literature models that performs well [57].
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Fig. 9: The training process of the safe-DRL agent. (a) The reward

value; (b) The constraint value of operating power.

TABLE IV: The training efficiency results for 2500 episodes.

Methods Sample efficiency Convergence time Convergence reward
Safe-DRL ∼500 2.9 mins -30

DRL ∼1000 4.3 mins -45

signal to the agent to cut down the DCS’s operating power to
be lower than 60 MW in this dispatch period (15 mins). The
control power results of DCS for providing operating reserve
is shown in Fig. 10, which applies three different controllers
(i.e., PI, the traditional DRL and the proposed safe-DRL) to
the system in Fig. 10(a), Fig. 10(b) and Fig. 10(c), respectively.

It can be seen from Fig. 10(a) that DCS operating power
is cut down and satisfies the required power after 5 mins.
Because the PI controller is designed based on the feedback,
it cannot respond to the changing environment immediately
and results in some time delay. In Fig. 10(b) and Fig. 10(c),
the DRL and safe-DRL controllers can decrease the operating
power more quickly compared with PI controller, where the
power reduction is achieved only within 1 min. Moreover,
during the whole dispatch period, the operating power in
Fig. 10(a) cannot be maintained below 60 MW and exceeds
the required power cap at 14:11 due to the dynamic cooling
demand in buildings (e.g., variational heat loads caused by
people flows). By contrast, the operating power can be con-
trolled under the power cap during all the dispatch period in
Fig. 10(c), which validates the effectiveness of the proposed
safe-DRL agent to satisfy power system’s critical constraint
strictly. In Fig. 10(b), the traditional DRL method can also
achieve the required power cap after training, however its
training process can not satisfy the constraint.

After the power reduction stage, three controllers in Fig. 10
increases DCS’s operating power to restore buildings’ indoor
temperatures. However, a new peak power 114 MW and 104
MW appears in the recovery stage in Fig. 10(a) and Fig. 10(b),
respectively. They are even much higher than the original daily
maximum operating power (96 MW). This phenomenon may
cause a secondary impact on the power system that has just
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Fig. 10: The control power results of DCS based on (a) PI
controller; (b) Traditional DRL method; (c) Safe-DRL method.

TABLE V: The statistical indicator of the temperature influence to
buildings

Methods Max deviation Uncomfortable number Average deviation
PI 1.57 ◦C 6 0.75 ◦C

DRL 1.18 ◦C 2 0.80 ◦C
Safe-DRL 0.93 ◦C 0 0.85 ◦C

returned to the stable state. By utilizing the proposed safe-
DRL method in Fig. 10(c), the safe-layer limits the peak value
during the recovery stage and guarantees the smooth recovery
of the operating power without a new peak power rebound.

Moreover, when DCS is controlled to provide operating
reserve, building’s indoor temperature will get influenced and
deviates from its set value, as shown in Fig. 11. The blue
area shows the comfortable temperature range in buildings,
and ∆T denotes each building’s temperature deviation. In the
power reduction stage, all the buildings’ indoor temperatures
increase due to the reduction of cooling power supplies. In
Fig. 11(a), more than half of the buildings’ indoor tempera-
tures deviate larger than 1 ◦C and enter the uncomfortable area.
It means that some buildings get seriously impacted during the
regulation process while some others do not. In Fig. 11(b), the
DRL method can maintain the temperature comfort better than
PI, while some buildings’ indoor temperature still exceed the
comfortable range. By contrast, in Fig. 11(c), the temperature
deviations in different buildings are close and maintained
within 1 ◦C by using the safe-DRL controller. Although all
buildings have different floor areas, heights and heat loads, the
temperature influence to each building is always similar. Thus,
the safe-DRL method is insensitive to buildings’ different
models. As shown in Table V, it can be seen the max deviation
of buildings in safe-DRL is the smallest, which makes sure
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Fig. 11: The temperature deviation results based on (a) PI

controller; (b) Traditional DRL method; (c) Safe-DRL method.

more buildings comfortable. However, the average temperature
deviation of all the buildings is a little higher (around 0.05°C)
than the other two methods, which is small and can be
neglected. This validates the advantage of the proposed method
to regulate each building’s mass flow rate dynamically and
guarantee their temperature requirements.

It can be seen from Figs. 10-11 that the power rebound
is more obvious with the PI method, because the indoor
temperatures can recover to their set values quickly after the
power reduction period and cause the temperature overshoot.
Compared with the PI method, the proposed safe-DRL method
can control the indoor temperature to recover the set values
smoothly. That is to say, the safe-DRL method addresses the
power rebound at the cost of a longer recovery time.

E. Physical Operating States of DCS During Control Process

Fig. 12 shows the control results of all the buildings’
water mass flows mI

t in the first water loop. Fig. 12(a) and
Fig. 12(b) are obtained based on the PI controller and safe-
DRL method, respectively. In the power reduction stage, all
the buildings’ mass flows are decreased slowly based on the
feedback with the same proportion in Fig. 12(a), which is
regardless of the differences among buildings. However, mass
flows are decreased quickly at first, and then adjusted in
different directions for satisfying different cooling demands in
heterogeneous buildings in Fig. 12(b). Therefore, the proposed
safe-DRL method can consider different buildings’ thermal
inertia characteristics and guarantee their comforts. In the
power recovery stage, water mass flows in Fig. 12(a) recover
with a faster speed than that in Fig. 12(b), which makes it
easier for the PI controller to cause power rebound.

Buildings’ wind mass flows mw
t are dependent variables

during the control process. If buildings’ indoor temperature is
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Fig. 12: The water mass flow in buildings based on (a) PI

controller; (b) Safe-DRL method.

higher than the set value, wind mass flows mw
t will increase

to cool down the buildings. The dynamic processes of the
wind mass flow in different buildings are illustrated in Fig. 13,
where Fig. 13(a) and Fig. 13(b) are the control results of
the PI controller and safe-DRL, respectively. In the power
reduction stage, wind mass flows in two figures both increase
automatically due to the decrease of chilled water. The increase
speed in Fig. 13(b) is faster than that in Fig. 13(a), because
a faster power decrease in the safe-DRL method makes a
sharper increase of buildings’ indoor temperatures. Buildings
want to increase their cooling winds to cool down the indoor
temperature.

In the power recovery stage, wind mass flows in Fig. 13(b)
decrease more slowly than that in Fig. 13(a). It means build-
ings’ indoor temperatures are recovered more slowly using the
safe-DRL method for preventing the power rebound. However,
in the PI controller, the water mass flows are increased quickly
in the recovery stage, which results in the quick decrease of
wind mass flows in Fig. 13(a). To sum up, the proposed safe-
DRL method can slow down the adjustment of wind mass
flows to avoid the power rebound.

F. Sensitivity of the Key Parameters of DCS for Providing
Operating Reserve

Considering the real-time demands from power systems,
the service requirements of the power cap and duration are
probably various. Thus, the sensitive analysis is carried out to
validate the effectiveness of the proposed method in different
scenarios. Fig. 14(a) and Fig. 14(b) show the analysis results of
different duration periods and power caps, respectively. There
are two observations: each building’ maximum temperature
deviation ∆Tmax, and the maximum power consumption Pmax.
The ∆Tmax is for representing the indoor temperature comfort
in buildings, and Pmax is for quantifying power cap violations.
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Fig. 13: The wind mass flow in buildings based on (a) PI

controller; (b) Safe-DRL method.

Fig.14(a) shows the control results based on different sce-
narios of duration time, which ranges from 5 minutes to 50
minutes, where the power cap is set as 60MW. It can be seen
that the power cap can be always satisfied during the regulation
period with different duration time. However, the impacts on
buildings’ indoor temperature are more significant with the
increase of duration time. When the duration time is longer
than 30 minutes, some buildings’ temperature deviations can
be up to 1.5◦C. By contrast, when the duration time is less
than 30 minutes, all the buildings’ temperature deviations are
comparatively marginal with small variances.

Fig.14(b) shows the control results based on different re-
quired power caps, which range from 30MW to 80MW with
the same duration time 15 minutes. It can be seen that the DCS
is capable to provide high-quality operating reserve when the
power cap is higher than 45 MW. However, the power cap can
not be satisfied when it is lower than 45 MW, because DCS
has the minimum physical limits in water mass flows. Besides,
a lower power cap can result in larger temperature impacts on
buildings because of less cooling supplies. It can be seen from
Fig.14(b) that the average temperature deviation is out of the
comfortable range and the corresponding variances are large,
when the power cap is lower than 45 MW.

In summary, the proposed safe-DRL can generally perform
well with different service duration and power cap scenarios.
However, long service duration time and low power cap
may deteriorate its performance. A reasonable power cap and
service duration time are significant for the final control results
of DCS, which are generally determined by the capacity offer
of DCS in electrical market [51]. The strategy for the DCS
operator to provide its operating reserve capacity is beyond
the scope of this paper, but will be our future work.
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Fig. 14: The sensitivity results of (a) Duration; (b) Power cap.

V. CONCLUSION

This paper proposes a model-free safe-DRL scheme for
DCS control problem to provide operating reserve. A safe
layer is proposed to effectively guarantee the critical power
constraint in the power reduction stage. A self-adaptive target
method is further adopted to tackle the power rebound in the
power recovery stage. Meanwhile, it minimizes the impacts
on buildings’ indoor temperature to keep all the buildings
as comfortable as possible. Numerical studies show that the
DCS’s operating power is always below the power cap during
training, which ensures the “safety” for providing operating
reserve. Besides, the DCS’s operating power can recover
smoothly and avoid an undesirable peak power rebound. All
the buildings’ temperature deviations can be guaranteed within
the required range ± 1◦C to stay comfortable.

The well-trained agent in the proposed safe-DRL method
can usually take effects on the similar DCS. If the physical
system is totally different, the agent probably should be trained
again using the new system’s historical data. To be more
efficient, the agent can transfer the old system’s knowledge
to the new system by less training episodes, which also will
be our future work. For the ancillary service that requires a
long duration (e.g., more than one hour), it is probably more
efficient for DCS to regulate both the chilled water’s mass flow
and supply temperature, which will be studied in our future
work as well.
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