Integration of Air Conditioning and Heating into Modern Power Systems
Integration of Air Conditioning and Heating into Modern Power Systems

Enabling Demand Response and Energy Efficiency
The release of carbon dioxide and other greenhouse gases due to human activity results in a host of environmental issues. The enhanced public concern for adverse environmental impacts associated with the use of conventional energy sources requires a transition toward clean energy systems. Moreover, the de-carbonization of electric power systems plays a significant role in reducing anthropogenic carbon emissions, since electric power systems remain the primary source of carbon emissions in the world. As a result, the application of renewable energy in electric power systems generates great interest. Among renewable energy sources, wind energy has experienced rapid development and has made significant inroads into electrical power systems. Over the past decade, the global cumulative installed capacity of wind energy has been growing at a rate of more than 21% annually. In 2015, global wind power capacity increased by about 17%. In China, wind power has become the third largest power source, following thermal and hydroelectric power, and generates 4.8% of the country’s electricity in 2017.

However, the power generated from renewable energy such as wind is fluctuating and uncertain, which presents significant challenges to the efficient utilization. As electricity demand and supply must be maintained in balance at all times, power systems need to absorb the electricity fluctuation from renewable energy. An increasing capacity of fluctuating renewable energy will increase the need for flexibility during power system operation. Flexibility is the ability of the power system to deploy its resources for rebalancing customer demand and generation when fluctuations exist. For example, downward reserve is required to ensure power system balance when the amount of injected wind power is higher. Conversely, upward reserve is required when the amount of wind power injection is lower. If there is not sufficient operational flexibility, the efficient utilization of renewable energy cannot be achieved. The serious wind power curtailment issue in China could well prove that. The coal-dominated generation mix in China works against the high level of wind penetration, since the flexibility of coal-fired generating units is constrained by their ramp-up and ramp-down rates as well as their minimum stable generation output. China’s inflexible generation mix, which cannot respond well to changes in wind power output, forces it to curtail a large amount of
wind energy every year, despite the country’s renewable energy ambitions. Wind energy curtailment in China is becoming increasingly serious. The total energy loss from wind curtailment from 2011 to 2015 was approximately 95.9 billion kWh, nearly equal to the gross electricity generated by wind energy in Denmark in 2013.

The development of information and communication technologies and electricity market has made the remote control of flexible loads much easier. Thus, it is possible for small end customers to provide operating reserve to support power system operation. As one of the most popular and easily controlled flexible loads, air conditioners and heating equipment account for a large share in power consumption due to the mass application across the world. Statistical data have shown that air conditioners account for approximately 35, 33, and 40% of the electricity consumption during the peak hours in many cities in China, Spain, and India, respectively. Therefore, these flexible loads have yielded enormous potential in serving as energy storage devices, which can provide operating reserve by reducing power consumption temporarily. In this field, some researches have been conducted.

The book focuses on integration of air conditioning and heating as demand response into modern power system operation and planning. Both models and methods have been addressed with engineering practice. This is achieved by providing in-depth study on air conditioner aggregation providing operating reserve and frequency regulation service for helping power system operation. Different models of air conditioner aggregation and corresponding control methods are studied in detail. Moreover, the comprehensive and systematic treatment of incorporating flexible heating demand into the integrated energy system is one of the major features of the book, which is particularly suited for readers who are interested to learn methods and solutions of demand response in smart grid environment. The book can benefit researchers, engineers, and graduate students in the fields of electrical and electronic engineering, control engineering, computer engineering, etc.

There are eight chapters in this book.

- Chapter 1 introduces the development of the air conditioning and heating loads as demand response in modern power systems. The advantages and some existing studies are also introduced in this chapter.
- Chapter 2 is devoted to the operating reserve evaluation of aggregated air conditioners. The thermal model of the room and the operating reserve characteristics of an individual air conditioner are developed. The performance of the operating reserve provided by aggregated air conditioners and the corresponding evaluation indexes are proposed, respectively. The numerical studies are presented to illustrate the effectiveness of the proposed model and methods.
- Chapter 3 is devoted to the operating reserve capacity evaluation of aggregated heterogeneous thermostatically controlled loads (TCLs) with price signals. The individual TCL model on account of consumer behaviors is developed. On this basis, the moment estimation method and the probability density estimation method are proposed to estimate the reserve capacity with insufficient data.
• Chapter 4 is devoted to the lead–lag rebound effect from the aggregate response of air conditioners controlled by the changes of the set point temperature. The impacts of the lead–lag rebound are quantified by a proposed capacity–time evaluation framework of operating reserve. On this basis, an optimal sequential dispatch strategy of air conditioners is proposed for the entire mitigation of the lead–lag rebound and the provision of operating reserve with multiple duration time.

• Chapter 5 is devoted to the frequency regulation service (FRS) provided by the inverter air conditioners. The equivalent modeling of the inverter air conditioners is developed. In this manner, the inverter AC can be scheduled and compatible with the existing control system. A stochastic allocation method of the regulation sequence among inverter ACs is proposed to reduce the effect of FRS on customers. Besides, a hybrid control strategy by considering the dead band control and the hysteresis control is developed to reduce the frequency fluctuations of power systems.

• Chapter 6 expands the demand response to the heat and power integrated energy system (HE-IES). HE-IES, based on combined heat and power (CHP), is one of the most important forms of IES. It is assumed that both electricity energy system and heat energy system are managed by a single ISO and all the aggregators seek to minimize their energy costs. Incorporating the aggregators’ flexible energy demand into the central energy dispatch model therefore forms a two-level optimization problem (TLOP), where the ISO maximizes social welfare subject to aggregators’ strategies, in which aggregators adjust their energy demand so as to minimize the energy purchase cost.

• Chapter 7 analyzes the demand response potential of customers (usually refer to buildings) in the distribution-level heat and electricity integrated energy system. This chapter proposes a framework for utilizing the demand response to improve the operation of the integrated energy system which has gained rapid development recently. The framework involves three levels of the integrated energy system: aggregation of the smart buildings, distribution system, and transmission system or sub-transmission system. In the framework, the buildings’ demand response potential can be fully utilized and the operational flexibility of the transmission-level integrated energy system can be significantly improved.

• Chapter 8 is devoted to the evaluation of the economy of the three different flexibility resources to find the advantages/disadvantages of different resources and to provide guidance for investment in these flexible resources.

The authors shared the work in writing this book.
It was a pleasure working with Springer Associate Editor, Ms. Jasmine Dou.

Hangzhou, China Yi Ding
Macau/Hangzhou, China Yonghua Song
Hangzhou, China Hongxun Hui
Hangzhou, China Changzheng Shao
Contents

1 Air Conditioning and Heating as Demand Response in Modern Power Systems ... 1
 References .. 4

2 Aggregated Air Conditioners for Providing Operating Reserve 7
 2.1 Introduction .. 7
 2.2 Operating Reserve Provided by Individual AC 9
 2.2.1 Thermal Model of the Room 9
 2.2.2 Operation Characteristics of Individual Air Conditioner ... 10
 2.2.3 Operating Reserve Provided by Individual Air Conditioner ... 11
 2.3 Operating Reserve Provided by Aggregated ACs 14
 2.3.1 Performance of Operating Reserve Provided by Aggregated ACs 15
 2.3.2 Simulation Framework for Evaluating Operating Reserve Performance 16
 2.4 Case Studies and Discussions 18
 2.4.1 Parameter Initialization 18
 2.4.2 Operating Reserve Performance with Different Temperature Adjustments 19
 2.4.3 Operating Reserve Performance with Different Numbers of ACs 21
 2.4.4 Analysis of Aggregated ACs Returning to Original Set Temperature ... 24
 2.4.5 Analysis of Demand Response in Actual Case Studies .. 25
 2.5 Conclusions ... 26
 References .. 26
3 Heterogeneous Air Conditioner Aggregation for Providing Operating Reserve Considering Price Signals

3.1 Introduction .. 29
3.2 Individual TCL Model 30
 3.2.1 Framework and Electric-Thermal Model 30
 3.2.2 Consumer Satisfaction Quantization 32
 3.2.3 Maximum Satisfaction Control Strategies 33
3.3 ORC Evaluation of Aggregated Heterogeneous TCLs 34
 3.3.1 Moment Estimation Method 35
 3.3.2 Probability Density Estimation Method 35
3.4 Case Studies .. 38
 3.4.1 The Test System 39
 3.4.2 ORC Evaluation with Insufficient Data 41
 3.4.3 ORC Evaluation in Actual Case Studies 43
3.5 Conclusions .. 45
References ... 46

4 Air Conditioner Aggregation for Providing Operating Reserve Considering Lead-Lag Rebound Effect

4.1 Introduction .. 49
4.2 Analysis of the Lead-Lag Rebound Effect 52
 4.2.1 Model of an Individual AC 52
 4.2.2 Aggregate Response of ACs 52
 4.2.3 Lead Rebound Effect and Lag Rebound Effect 54
4.3 Capacity-Time Evaluation of the Operating Reserve Considering Lead-Lag Rebound Effect 56
 4.3.1 Universal Expression of the Load Reduction/Increase ... 56
 4.3.2 Evaluation of the Operating Reserve Provided by ACs
 on the Capacity Dimension 56
 4.3.3 Evaluation of the Operating Reserve Provided by ACs
 on the Time Dimension 58
4.4 Sequential Dispatch Strategy of ACs for Providing Operating Reserve with Multiple Duration Time 58
 4.4.1 The Interactions Among the System Operator,
 Aggregators and Consumers 58
 4.4.2 Sequential Dispatch Strategy of ACs to Mitigate the
 Lead-Lag Rebound Effect 60
 4.4.3 Capacity-Time Co-optimization of Sequential Dispatch
 Process During the Reserve Deployment Period 62
 4.4.4 Capacity-Time Co-optimization of Sequential Dispatch
 Process During the Recovery Period 64
4.5 Case Studies and Simulation Results .. 66
 4.5.1 Evaluation of ACs’ Potential for the Provision
 of Operating Reserve .. 66
 4.5.2 Provision of Operating Reserve with Various Duration
 Time and Reserve Capacity 70
 4.5.3 Comparison of Different Dispatch Strategy of ACs
 for the Provision of Operating Reserve 74
4.6 Conclusions .. 79
References ... 79

5 Inverter Air Conditioner Aggregation for Providing Frequency
Regulation Service .. 83
 5.1 Introduction .. 83
 5.2 Thermal and Electrical Model of the Inverter AC Considering
 Providing FRS ... 85
 5.2.1 Thermal Model of a Room 85
 5.2.2 Electrical Model of an Inverter AC Considering
 Providing FRS for Power Systems 86
 5.2.3 Analysis of the Thermal and Electrical Model 87
 5.3 Equivalent Modeling of Inverter ACs for Providing Frequency
 Regulation Service .. 89
 5.3.1 Equivalent Modeling of Inverter ACs 89
 5.3.2 Equivalent Control Parameters 91
 5.3.3 Equivalent Evaluation Parameters 92
 5.4 Control of Aggregated Inverter ACs for Providing Frequency
 Regulation Service .. 93
 5.4.1 The Regulation Capacity Allocation Among Generators
 and Inverter ACs .. 93
 5.4.2 The Control Strategy of Inverter ACs 95
 5.4.3 The Communication and Control Process
 of Inverter ACs .. 95
 5.5 Case Studies .. 98
 5.5.1 Test System .. 98
 5.5.2 Simulation Results ... 99
 5.5.3 Experimental Results 103
 5.6 Conclusions .. 104
References ... 105

6 Integration of Flexible Heating Demand into the Integrated
Energy System .. 107
 6.1 Introduction .. 107
 6.2 Heat and Electricity Integrated Energy System 109
 6.2.1 Description of the HE-IES 109
 6.2.2 Modelling the Customer Aggregators’ Energy Demand ... 110
Contents

6.3 TLOP-Formulation of the Dispatch Model 113
6.4 Simplifying the Sub-problems’ KKT Conditions 115
6.5 Application and Test Results .. 119
6.5.1 Test System and Scenarios 119
6.5.2 Simulation Results ... 122
6.6 Conclusions ... 126
References .. 126

7 A Three-Level Framwork for Utilizing the Demand Response to Improve the Operation of the Integrated Energy Systems 129
7.1 Introduction .. 129
7.2 Energy Demand of Smart Buildings 131
7.2.1 Modeling Individual Building’s Energy Demand Based on the Comprehensive DR Strategy .. 132
7.2.2 Energy Demand Aggregation of Multiple Buildings 133
7.3 Concept and Framework of the Real-Time DRX Market 134
7.3.1 Three-Level Framework of the DRX Market 135
7.3.2 Optimization Models in the DRX Market 137
7.3.3 Clearing of the DRX Market 140
7.4 Case Studies ... 143
7.4.1 Test System and Parameters 143
7.4.2 Comparison Between the Proposed Comprehensive DR Strategies and the Load Shifting Strategy 144
7.4.3 Comparison Between the Real-Time DRX Framework and the Day-Ahead DR Framework 148
7.4.4 Comparisons Between the Proposed Clearing Method and the Iteration-Based Clearing Method 149
7.5 Conclusions .. 150
References .. 150

8 Economical Evaluation of the Flexible Resources for Providing the Operational Flexibility in the Power System 153
8.1 Introduction .. 153
8.2 Methods to Calculate the Balancing Costs When Utilizing Different Flexible Resources .. 156
8.2.1 Mathematic Model for Evaluating the Balancing Cost of Utilizing Coal-Fired Generating Units 156
8.2.2 Optimization Model for Sizing the ESS and Determining the Balancing Cost .. 160
8.2.3 Optimization Model for Determining the Balancing Cost When Utilizing the DSM .. 162
8.3 Simulation Results and Analysis .. 164
 8.3.1 Parameters .. 164
 8.3.2 Simulation Results .. 165
 8.3.3 Comparison and Conclusion 171
8.4 Conclusions ... 172
References .. 172